Advertisement

Applied Physics A

, Volume 113, Issue 2, pp 273–283 | Cite as

The influence of ultra-fast temporal energy regulation on the morphology of Si surfaces through femtosecond double pulse laser irradiation

  • M. Barberoglou
  • G. D. TsibidisEmail author
  • D. Gray
  • E. Magoulakis
  • C. Fotakis
  • E. Stratakis
  • P. A. Loukakos
Rapid communication

Abstract

The effect of ultra-short laser-induced morphological changes upon irradiation of silicon with double pulse sequences is investigated under conditions that lead to mass removal. The temporal delay between 12 double and equal-energy pulses (E p=0.24 J/cm2 each, with pulse duration t p=430 fs, 800 nm laser wavelength) was varied between 0 and 14 ps and a decrease of the damaged area, crater depth size and periodicity of the induced subwavelength ripples (by 3–4 %) was observed with increasing pulse delay. The proposed underlying mechanism is based on the combination of carrier excitation and energy thermalization and capillary wave solidification and aims to provide an alternative explanation of the control of ripple periodicity by temporal pulse tailoring. This work demonstrates the potential of pulse shaping technology to improve ultra-fast laser-assisted micro/nanoprocessing.

Keywords

Mushy Zone Lattice Temperature Spot Area Double Pulse Pulse Delay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Integrated Initiative of European Laser Research Infrastructures LASERLAB-II (Grant Agreement No. 228334). G.D.T. and E. Stratakis acknowledge financial support from the ‘3DNeuroscaffolds’ research project.

References

  1. 1.
    B. Wu, M. Zhou, J. Li, X. Ye, G. Li, L. Cai, Appl. Surf. Sci. 256, 61 (2009) ADSCrossRefGoogle Scholar
  2. 2.
    V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, G.A.J. Amaratunga, Thin Solid Films 453, 492 (2004) ADSCrossRefGoogle Scholar
  3. 3.
    N.M. Bulgakova, I.M. Burakov, Y.P. Meshcheryakov, R. Stoian, A. Rosenfeld, I.V. Hertel, J. Laser Micro Nanoeng. 2, 76 (2007) CrossRefGoogle Scholar
  4. 4.
    A.Y. Vorobyev, C. Guo, Laser Photonics Rev. 7, 385 (2013) CrossRefGoogle Scholar
  5. 5.
    V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D.G. Papazoglou, I. Zergioti, Appl. Phys. Lett. 88, 081103 (2006) ADSCrossRefGoogle Scholar
  6. 6.
    D. Ashkenasi, G. Muller, A. Rosenfeld, R. Stoian, I.V. Hertel, N.M. Bulgakova, E.E.B. Campbell, Appl. Phys. A, Mater. Sci. Process. 77, 223 (2003) ADSGoogle Scholar
  7. 7.
    E. Stratakis, Sci. Adv. Mater. 4, 407 (2012) CrossRefGoogle Scholar
  8. 8.
    J.K. Chen, J.E. Beraun, J. Opt. A, Pure Appl. Opt. 5, 168 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    K. Fushinobu, L.M. Phinney, N.C. Tien, Int. J. Heat Mass Transf. 39, 3181 (1996) CrossRefGoogle Scholar
  10. 10.
    V. Schmidt, W. Husinsky, G. Betz, Appl. Surf. Sci. 197, 145 (2002) ADSCrossRefGoogle Scholar
  11. 11.
    T.E. Itina, O. Uteza, N. Sanner, M. Sentis, J. Optoelectron. Adv. Mater. 12, 470 (2010) Google Scholar
  12. 12.
    E. Stratakis, A. Ranella, C. Fotakis, Biomicrofluidics 5, 013411 (2011) CrossRefGoogle Scholar
  13. 13.
    A.M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000) ADSCrossRefGoogle Scholar
  14. 14.
    V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S.H. Anastasiadis, C. Fotakis, Adv. Mater. 20, 4049 (2008) CrossRefGoogle Scholar
  15. 15.
    S. Amoruso, R. Bruzzese, X. Wang, J. Xia, Appl. Phys. Lett. 93, 191504 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    S. Hohm, A. Rosenfeld, J. Kruger, J. Bonse, Appl. Surf. Sci. 278, 7 (2013) ADSCrossRefGoogle Scholar
  17. 17.
    A. Klini, P.A. Loukakos, D. Gray, A. Manousaki, C. Fotakis, Opt. Express 16, 11300 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    E.L. Papadopoulou, E. Axente, E. Magoulakis, C. Fotakis, P.A. Loukakos, Appl. Surf. Sci. 257, 508 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    A. Rosenfeld, M. Rohloff, S. Hohm, J. Kruger, J. Bonse, Appl. Surf. Sci. 258, 9233 (2012) ADSCrossRefGoogle Scholar
  20. 20.
    M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, R. Stoian, A. Rosenfeld, I.V. Hertel, Appl. Phys. Lett. 83, 1474 (2003) ADSCrossRefGoogle Scholar
  21. 21.
    R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I.V. Hertel, Appl. Phys. A, Mater. Sci. Process. 77, 265 (2003) ADSCrossRefGoogle Scholar
  22. 22.
    S. Hohm, M. Rohloff, A. Rosenfeld, J. Kruger, J. Bonse, Appl. Phys. A, Mater. Sci. Process. 110, 553 (2013) ADSCrossRefGoogle Scholar
  23. 23.
    M.E. Povarnitsyn, T.E. Itina, K.V. Khishchenko, P.R. Levashov, Phys. Rev. Lett. 103, 195002 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003) ADSCrossRefGoogle Scholar
  25. 25.
    M. Huang, F.L. Zhao, Y. Cheng, N.S. Xu, Z.Z. Xu, ACS Nano 3, 4062 (2009) CrossRefGoogle Scholar
  26. 26.
    J. Bonse, M. Munz, H. Sturm, J. Appl. Phys. 97, 013538 (2005) ADSCrossRefGoogle Scholar
  27. 27.
    J.E. Sipe, J.F. Young, J.S. Preston, H.M. Van Driel, Phys. Rev. B 27, 1141 (1983) ADSCrossRefGoogle Scholar
  28. 28.
    J. Bonse, A. Rosenfeld, J. Kruger, J. Appl. Phys. 106, 104910 (2009) ADSCrossRefGoogle Scholar
  29. 29.
    O. Varlamova, F. Costache, J. Reif, M. Bestehorn, Appl. Surf. Sci. 252, 4702 (2006) ADSCrossRefGoogle Scholar
  30. 30.
    G.D. Tsibidis, M. Barberoglou, P.A. Loukakos, E. Stratakis, C. Fotakis, Phys. Rev. B 86, 115316 (2012) ADSCrossRefGoogle Scholar
  31. 31.
    M. Rohloff, S.K. Das, S. Hohm, R. Grunwald, A. Rosenfeld, J. Kruger, J. Bonse, J. Appl. Phys. 110, 014910 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    J. Bonse, J. Kruger, J. Appl. Phys. 108, 034903 (2010) ADSCrossRefGoogle Scholar
  33. 33.
    H.M. Van Driel, Phys. Rev. B 35, 8166 (1987) ADSCrossRefGoogle Scholar
  34. 34.
    J.K. Chen, D.Y. Tzou, J.E. Beraun, Int. J. Heat Mass Transf. 48, 501 (2005) CrossRefGoogle Scholar
  35. 35.
    G.D. Tsibidis, E. Stratakis, K.E. Aifantis, J. Appl. Phys. 111, 053502 (2012) ADSCrossRefGoogle Scholar
  36. 36.
    R. Kelly, A. Miotello, Appl. Surf. Sci. 96(8), 205 (1996) ADSCrossRefGoogle Scholar
  37. 37.
    X.F. Xu, Appl. Surf. Sci. 197, 61 (2002) ADSCrossRefGoogle Scholar
  38. 38.
    B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tunnermann, Appl. Phys. A, Mater. Sci. Process. 63, 109 (1996) ADSCrossRefGoogle Scholar
  39. 39.
    J. Zhou, H.L. Tsai, P.C. Wang, J. Heat Transf. 128, 680 (2006) CrossRefGoogle Scholar
  40. 40.
    J.H. Cho, D.F. Farson, J.O. Milewski, K.J. Hollis, J. Phys. D, Appl. Phys. 42, 175502 (2009) ADSCrossRefGoogle Scholar
  41. 41.
    H.Y. Zhao, W.C. Niu, B. Zhang, Y.P. Lei, M. Kodama, T. Ishide, J. Phys. D, Appl. Phys. 44, 485302 (2011) CrossRefGoogle Scholar
  42. 42.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd edn. (Pergamon Press, Oxford, 1987) zbMATHGoogle Scholar
  43. 43.
    M. Bonn, D.N. Denzler, S. Funk, M. Wolf, S.S. Wellershoff, J. Hohlfeld, Phys. Rev. B 61, 1101 (2000) ADSCrossRefGoogle Scholar
  44. 44.
    N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, W. Marine, E.E.B. Campbell, Appl. Phys. A, Mater. Sci. Process. 81, 345 (2005) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Barberoglou
    • 1
    • 2
  • G. D. Tsibidis
    • 1
    • 3
    Email author
  • D. Gray
    • 1
  • E. Magoulakis
    • 1
    • 2
  • C. Fotakis
    • 1
    • 2
  • E. Stratakis
    • 1
  • P. A. Loukakos
    • 1
  1. 1.Foundation for Research & Technology—HellasInstitute of Electronic Structure and LaserHeraklionGreece
  2. 2.Department of PhysicsUniversity of CreteHeraklionGreece
  3. 3.Materials Science and Technology DepartmentUniversity of CreteHeraklionGreece

Personalised recommendations