Applied Physics A

, Volume 113, Issue 1, pp 1–4 | Cite as

Photoinduced reversible changes in the electronic structure of photochromic diarylethene films

  • Johannes Frisch
  • Martin Herder
  • Philipp Herrmann
  • Georg Heimel
  • Stefan Hecht
  • Norbert Koch
Rapid communication

Abstract

The change in the valence electronic structure upon switching of two photochromic diarylethene derivatives, i.e. 1,2-bis(2-methyl-5-p-tolylthiophen-3-yl)cyclopent-1-ene (DAE1) and 1,2-bis(5-(4-hexyloxycarbonylphenyl)-2-methylthiophen-3-yl)cyclopent-1-ene (DAE2), was measured by photoelectron spectroscopy. Switching between open and closed forms was followed in situ upon illumination. The increase of the ionization energy from the closed to the open form was 0.85 eV for DAE1 and 0.80 eV for DAE2. For DAE1, the work function also decreased by 0.25 eV upon switching, which is explained by a decrease of the intrinsic molecular dipole moment and a preferential orientation of molecules in thin films.

Notes

Acknowledgements

This work was supported by the SPP1355 and the SFB658 of the DFG and the Helmholtz-Energie-Allianz ‘Hybrid-Photovoltaik’. We thank Juergen P. Rabe for providing access to a photoemission setup.

References

  1. 1.
    T. Tsujioka, M. Irie, J. Photochem. Photobiol., C, Photochem. Rev. 11, 1 (2010) CrossRefGoogle Scholar
  2. 2.
    T. Tsujioka, M. Shimizu, E. Ishihara, Appl. Phys. Lett. 87, 213506 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    P. Zachaias, M.C. Gather, A. Koehnen, N. Rehmann, K. Meerholz, Angew. Chem. 121, 4098 (2009) CrossRefGoogle Scholar
  4. 4.
    P. Anderson, N.D. Robinson, M. Berggren, Adv. Mater. 17, 1798 (2005) CrossRefGoogle Scholar
  5. 5.
    R. Hayakawa, K. Higashiguchi, K. Matsuda, T. Chikyow, Y. Wakayama, ACS Appl. Mater. Interfaces 5, 3625 (2013) CrossRefGoogle Scholar
  6. 6.
    Z. Zhang, X. Liu, Z. Li, Z. Chen, F. Zhao, F. Zhang, C.-H. Tung, Adv. Funct. Mater. 18, 302 (2008) CrossRefGoogle Scholar
  7. 7.
    R.C. Shallcross, P. Zacharias, A. Koehnen, P.O. Koerner, E. Maibach, K. Meerholz, Adv. Mater. 25, 469 (2013) CrossRefGoogle Scholar
  8. 8.
    T. Tsujioka, T. Sasa, Y. Kakihara, Org. Electron. 13, 681 (2012) CrossRefGoogle Scholar
  9. 9.
    M. Irie, Chem. Rev. 100, 1685 (2000) CrossRefGoogle Scholar
  10. 10.
    W.R. Browne, B.L. Feringa, Annu. Rev. Phys. Chem. 60, 407 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    S. Tanaka, M. Toba, T. Nakashima, T. Kawai, K. Yoshino, Jpn. J. Appl. Phys. 47, 1215 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    E. Orgiu, N. Crivillers, M. Herder, L. Grubert, M. Paetzel, J. Frisch, E. Pavlica, D.T. Duong, G. Bratina, A. Salleo, N. Koch, S. Hecht, P. Samorì, Nat. Chem. 4, 675 (2012) CrossRefGoogle Scholar
  13. 13.
    C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999) ADSCrossRefGoogle Scholar
  14. 14.
    N. Koch, ChemPhysChem 8, 1438 (2007) CrossRefGoogle Scholar
  15. 15.
    B. Broeker, R.P. Blum, J. Frisch, A. Vollmer, O.T. Hofmann, R. Rieger, K. Muellen, J.P. Rabe, E. Zojer, N. Koch, Appl. Phys. Lett. 93, 243303 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    N. Koch, S. Duhm, J.P. Rabe, S. Rentenberger, R.L. Johnson, J. Klankermayer, F. Schreiber, Appl. Phys. Lett. 87, 101905 (2005) ADSCrossRefGoogle Scholar
  17. 17.
    J. Frisch, A. Vollmer, J.P. Rabe, N. Koch, Org. Electron. 12, 916 (2011) CrossRefGoogle Scholar
  18. 18.
    X. Cheng, Y.-Y. Noh, J. Wang, M. Tello, J. Frisch, R.-P. Blum, A. Vollmer, J.P. Rabe, N. Koch, H. Serringhaus, Adv. Mater. 19, 2407 (2009) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Johannes Frisch
    • 1
  • Martin Herder
    • 2
  • Philipp Herrmann
    • 1
  • Georg Heimel
    • 1
  • Stefan Hecht
    • 2
  • Norbert Koch
    • 1
  1. 1.Institut fuer PhysikHumboldt-Universitaet zu BerlinBerlinGermany
  2. 2.Institut fuer ChemieHumboldt-Universitaet zu BerlinBerlinGermany

Personalised recommendations