Applied Physics A

, Volume 113, Issue 3, pp 633–639 | Cite as

Influence of surface conditions on thermal positron reemission spectra from W(100)

  • K. Sudarshan
  • P. J. Wilkie
  • S. N. Samarin
  • P. Guagliardo
  • V. N. Petrov
  • A. H. Weiss
  • J. F. Williams
Article

Abstract

Our measurements trace the temporal dependence of positron reemission spectral features, namely, the reemission intensity, energy and angular distributions with post-cleaning time and oxygen exposure. The unwanted inelastic component in the reemission spectra can be kept at less than 6 % of the total reemitted positrons during long and continuous operation by simply ensuring the cleanliness of the sample with better vacuum level. Simultaneously the other optimized spectral features of the beam can be maintained except for the reemission spectral intensity which decreased with increasing time after cleaning. Even though oxygen at high temperature is used normally in the cleaning process of the tungsten moderators, exposure of the sample to oxygen at room temperature caused an exponential reduction in the reemission yield with exposure time.

References

  1. 1.
    P.J. Schultz, K.G. Lynn, Rev. Mod. Phys. 60(3), 701 (1988) ADSCrossRefGoogle Scholar
  2. 2.
    P.G. Coleman, Positron Beams and Their Applications (World Scientific, Singapore, 2000) CrossRefGoogle Scholar
  3. 3.
    N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, T. Narumi, A. Uedono, M. Fujinami, Appl. Phys. Lett. 94, 194104 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    T. Oka, S. Jinno, M. Fujinami, Anal. Sci. 25, 837 (2009) CrossRefGoogle Scholar
  5. 5.
    I.Y. Al-Qaradawi, P.G. Coleman, Appl. Surf. Sci. 194, 20 (2002) ADSCrossRefGoogle Scholar
  6. 6.
    R. Suzuki, G. Amarendra, T. Ohdaira, T. Mikado, Appl. Surf. Sci. 149, 66 (1999) ADSCrossRefGoogle Scholar
  7. 7.
    P.J. Schultz, K.G. Lynn, Phys. Rev. B 26, 2390 (1982) ADSCrossRefGoogle Scholar
  8. 8.
    E.M. Gullikson, A.P. Mills Jr., C.A. Murray, Phys. Rev. B 38, 1705 (1988) ADSCrossRefGoogle Scholar
  9. 9.
    E.M. Gullikson, A.P. Mills Jr., Phys. Rev. B 35, 8759 (1987) ADSCrossRefGoogle Scholar
  10. 10.
    I.J. Rosenberg, R.H. Howell, M.J. Fluss, Phys. Rev. B 35, 2083 (1987) ADSCrossRefGoogle Scholar
  11. 11.
    P.A. Hattunen, J. Makinen, D.T. Britton, E. Soininen, A. Vehanen, Phys. Rev. B 42, 1560 (1990) ADSCrossRefGoogle Scholar
  12. 12.
    J.H. Kim, A. Nangia, A.H. Weiss, Radiat. Phys. Chem. 58, 655 (2000) ADSCrossRefGoogle Scholar
  13. 13.
    Y.C. Jean, K.G. Lynn, M. Carroll, Phys. Rev. B 21, 4935 (1980) ADSCrossRefGoogle Scholar
  14. 14.
    R. Suzuki, T. Ohdaira, A. Uedono, Y.K. Cho, S. Yoshida, Y. Ishida, T. Ohshima, H. Itoh, M. Chiwaki, T. Mikado, T. Yamazaki, S. Tanigawa, Jpn. J. Appl. Phys. 37, 4636 (1998) ADSCrossRefGoogle Scholar
  15. 15.
    K.G. Lynn, H. Lutz, Phys. Rev. B 22, 4143 (1980) ADSCrossRefGoogle Scholar
  16. 16.
    D.M. Chen, K.G. Lynn, R. Pareja, B. Nielsen, Phys. Rev. B 31, 4123 (1985) ADSCrossRefGoogle Scholar
  17. 17.
    G. Amarendra, K.F. Canter, D.C. Schoepf, J. Appl. Phys. 80, 4660 (1996) ADSCrossRefGoogle Scholar
  18. 18.
    C. Hugenschmidt, B. Straßer, K. Schreckenbach, Appl. Surf. Sci. 194, 283 (2002) ADSCrossRefGoogle Scholar
  19. 19.
    A. Goodyear, A.P. Knights, P.G. Coleman, J. Phys. Condens. Matter 6, 9601 (1994) ADSCrossRefGoogle Scholar
  20. 20.
    E.M. Gullikson, A.P. Mills Jr., W.S. Crane, B.L. Brown, Phys. Rev. B 32, 5484 (1985) ADSCrossRefGoogle Scholar
  21. 21.
    K. Sudarshan, S.N. Samarin, P. Guagliardo, V.N. Petrov, A.H. Weiss, J.F. Williams, Phys. Rev. B 87, 085418 (2013) ADSCrossRefGoogle Scholar
  22. 22.
    Kh. Zakeri, T.R.F. Peixoto, Y. Zhang, J. Prokop, J. Kirschner, Surf. Sci. 604, L1 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    R. Cortenraada, S.N. Ermolov, V.N. Semenov, A.W. Denier van der Gon, V.G. Glebovsky, S.I. Bozhko, H.H. Brongersma, J. Cryst. Growth 222, 154 (2001) ADSCrossRefGoogle Scholar
  24. 24.
    C.A. Murray, A.P. Mills Jr., Solid State Commun. 34, 789 (1980) ADSCrossRefGoogle Scholar
  25. 25.
    K.G. Lynn, P.J. Schultz, Appl. Phys. A 37, 31 (1985) ADSCrossRefGoogle Scholar
  26. 26.
    D.W. Gidley, W.E. Frieze, Phys. Rev. Lett. 60, 1193 (1988) ADSCrossRefGoogle Scholar
  27. 27.
    E. Soininen, H. Huomo, P.A. Huttunen, J. Mäkinen, A. Vehanen, P. Hautojärvi, Phys. Rev. B 41, 6227 (1990) ADSCrossRefGoogle Scholar
  28. 28.
    E. Bauer, H. Poppa, Y. Vishwanath, Surf. Sci. 58, 517 (1976) ADSCrossRefGoogle Scholar
  29. 29.
    T.C. Leung, C.L. Kao, W.S. Su, Y.J. Feng, C.T. Chan, Phys. Rev. B 68, 195408 (2003) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • K. Sudarshan
    • 1
  • P. J. Wilkie
    • 1
  • S. N. Samarin
    • 1
  • P. Guagliardo
    • 1
  • V. N. Petrov
    • 1
    • 2
  • A. H. Weiss
    • 3
  • J. F. Williams
    • 1
  1. 1.ARC Centre of Excellence for Antimatter and Matter Studies, Centre for Atomic Molecular and Surface Physics, School of PhysicsThe University of Western AustraliaPerthAustralia
  2. 2.St. Petersburg State Polytechnical UniversitySaint PetersburgRussia
  3. 3.Physics DepartmentUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations