Advertisement

Applied Physics A

, Volume 112, Issue 3, pp 623–629 | Cite as

Influence of ambient pressure on the hole formation in laser deep drilling

  • S. DöringEmail author
  • S. Richter
  • F. Heisler
  • T. Ullsperger
  • A. Tünnermann
  • S. Nolte
Rapid communication

Abstract

We investigate the temporal evolution of the hole depth and shape for percussion drilling at different ambient pressure conditions. Deep drilling is performed in silicon as target material by ultrashort laser pulses at 1030 nm and a duration of 8 ps. Simultaneously, the backlit silhouette of the hole is imaged perpendicular to the drilling direction. While typical process phases like depth development and shape evolution are very similar for atmospheric pressure down to vacuum conditions (10−2 mbar), the ablation rate in the initial process phase is significantly increased for reduced pressure. The number of pulses till the stop of the drilling process also increases by a pressure reduction and exceeds drilling at atmospheric conditions by two orders of magnitude for a pressure of ca. 10−2 mbar. Accordingly, the maximum achievable hole depth is more than doubled. We attribute this behavior to an enlarged mean free path for ablation products at reduced pressure and therefore lower or no deposition of particles inside the hole capillary under vacuum conditions while debris fills the hole already after a few thousand pulses at atmospheric pressure. This is supported by scanning electron cross section images of the holes.

Keywords

Drilling Pulse Energy Ambient Pressure Ablation Rate Drilling Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG, Leibniz program) and the Fraunhofer–Gesellschaft. Sören Richter is supported by the Hans L. Merkle Stiftung.

References

  1. 1.
    F. Dausinger, F. Lichtner, H. Lubatschowski, Femtosecond Technology for Technical and Medical Applications (Springer, Berlin, 2004) CrossRefGoogle Scholar
  2. 2.
    D. Breitling, A. Ruf, F. Dausinger, Proc. SPIE 5339, 49 (2004) ADSCrossRefGoogle Scholar
  3. 3.
    S. Preuss, A. Demchuk, M. Stuke, Appl. Phys. A 61, 33 (1995) ADSCrossRefGoogle Scholar
  4. 4.
    B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996) ADSCrossRefGoogle Scholar
  5. 5.
    S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, J. Opt. Soc. Am. B 14, 2716 (1997) ADSCrossRefGoogle Scholar
  6. 6.
    S. Döring, S. Richter, S. Nolte, A. Tünnermann, Opt. Express 18, 20395 (2010) CrossRefGoogle Scholar
  7. 7.
    S. Döring, S. Richter, S. Nolte, A. Tünnermann, Appl. Phys. A 105, 69 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    S. Amoruso, B. Toftmann, J. Schou, R. Velotta, X. Wang, Thin Solid Films 453–454, 562 (2004) CrossRefGoogle Scholar
  9. 9.
    A.V. Bulgakov, I. Ozerov, W. Marine, Thin Solid Films 453–454, 557 (2004) CrossRefGoogle Scholar
  10. 10.
    S. Amoruso, R. Bruzzese, C. Pagano, X. Wang, Appl. Phys. A 89, 1017 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    T. Matsumura, A. Kazama, T. Yagi, Appl. Phys. A 81, 1393 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    A. Michalowski, D. Walter, F. Dausinger, T. Graf, J. Laser Micro Nanoeng. 3, 211 (2008) CrossRefGoogle Scholar
  13. 13.
    C. Föhl, D. Breitling, F. Dausinger, Proc. SPIE 5121, 271 (2003) ADSCrossRefGoogle Scholar
  14. 14.
    F.P. Mezzapesa, L.L. Columbo, M. Brambilla, M. Dabbicco, A. Ancona, T. Sibillano, G. Scamarcio, Appl. Phys. Lett. 101, 011103 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    A.E. Wynne, B.C. Stuart, Appl. Phys. A 76, 373 (2003) ADSCrossRefGoogle Scholar
  16. 16.
    S.M. Klimentov, P.A. Pivovarov, V.I. Konov, D. Breitling, F. Dausinger, Quantum Electron. 34, 537 (2004) ADSCrossRefGoogle Scholar
  17. 17.
    D. Meschede, Gerthsen Physik, 21st edn. (Springer, Berlin, 2002), pp. 221–223 zbMATHGoogle Scholar
  18. 18.
    A. Bondi, J. Phys. Chem. 68, 441 (1964) CrossRefGoogle Scholar
  19. 19.
    A. Di Bernardo, C. Courtois, B. Cros, G. Matthieussent, D. Batani, T. Desai, F. Strati, G. Lucchini, Laser Part. Beams 21, 59 (2003) ADSCrossRefGoogle Scholar
  20. 20.
    Z. Wu, X. Zhu, N. Zhang, J. Appl. Phys. 109, 053113 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    S. Besner, J.-Y. Degorce, A.V. Kabashin, M. Meunier, Appl. Surf. Sci. 247, 163 (2005) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. Döring
    • 1
    Email author
  • S. Richter
    • 1
  • F. Heisler
    • 1
  • T. Ullsperger
    • 1
  • A. Tünnermann
    • 1
    • 2
  • S. Nolte
    • 1
    • 2
  1. 1.Institute of Applied Physics, Abbe Center of PhotonicsFriedrich–Schiller-Universität JenaJenaGermany
  2. 2.Fraunhofer Institute for Applied Optics and Precision EngineeringJenaGermany

Personalised recommendations