Applied Physics A

, Volume 112, Issue 3, pp 615–622 | Cite as

Chemically assisted femtosecond laser machining for applications in LiNbO3 and LiTaO3

  • Prasahnt Sivarajah
  • Christopher A. Werley
  • Benjamin K. Ofori-Okai
  • Keith A. Nelson
Rapid communication

Abstract

We introduce and optimize a fabrication procedure that employs both femtosecond laser machining and hydrofluoric acid etching for cutting holes or voids in slabs of lithium niobate and lithium tantalate. The fabricated structures have 3 μm lateral resolution, a lateral extent of at least several millimeters, and cut depths of up to 100 μm. Excellent surface quality is achieved by initially protecting the optical surface with a sacrificial silicon dioxide layer that is later removed during chemical etching. To optimize cut quality and machining speed, we explored various laser-machining parameters, including laser polarization, repetition rate, pulse duration, pulse energy, exposure time, and focusing, as well as scanning, protective coating, and etching procedures. The resulting structures significantly broaden the capabilities of terahertz polaritonics, in which lithium niobate and lithium tantalate are used for terahertz wave generation, imaging, and control. The approach should be applicable to a wide range of materials that are difficult to process by conventional methods.

References

  1. 1.
    K. Wong, Properties of lithium niobate (INSPEC/Institution of Electrical Engineers, London, 2002) Google Scholar
  2. 2.
    L. Arizmendi, Phys. Status Solidi A 201(2), 253 (2004). doi:10.1002/pssa.200303911 ADSCrossRefGoogle Scholar
  3. 3.
    R.S. Weis, T.K. Gaylord, Appl. Phys. A, Solid Surf. 37(4), 191 (1985) ADSCrossRefGoogle Scholar
  4. 4.
    D. Auston, M. Nuss, IEEE J. Quantum Electron. 24(2), 184 (1988) ADSCrossRefGoogle Scholar
  5. 5.
    T.P. Dougherty, G.P. Wiederrecht, K.A. Nelson, J. Opt. Soc. Am. B 9(12), 2179 (1992) ADSCrossRefGoogle Scholar
  6. 6.
    K.L. Yeh, M.C. Hoffmann, J. Hebling, K.A. Nelson, Appl. Phys. Lett. 90(17), 171121 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    T. Feurer, J.C. Vaughan, K.A. Nelson, Science 299(5605), 374 (2003) ADSCrossRefGoogle Scholar
  8. 8.
    D.W. Ward, E. Statz, J.D. Beers, N. Stoyanov, T. Feurer, R.M. Roth, R.M. Osgood, K.A. Nelson, eprint (2004). arXiv:cond-mat/0401049
  9. 9.
    K.H. Lin, C.A. Werley, K.A. Nelson, Appl. Phys. Lett. 95(10), 103304 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    R.M. Koehl, S. Adachi, K.A. Nelson, J. Phys. Chem. A 103(49), 10260 (1999) CrossRefGoogle Scholar
  11. 11.
    P. Peier, S. Pilz, F. Müller, K.A. Nelson, T. Feurer, J. Opt. Soc. Am. B 25(7), B70 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    H. Inoue, K. Katayama, Q. Shen, T. Toyoda, K.A. Nelson, J. Appl. Phys. 105(5), 054902 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    Q. Wu, C.A. Werley, K.H. Lin, A. Dorn, M.G. Bawendi, K.A. Nelson, Opt. Express 17(11), 9219 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    C. Yang, Q. Wu, J. Xu, K.A. Nelson, C.A. Werley, Opt. Express 18(25), 26351 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    C.A. Werley, Q. Wu, K.H. Lin, C.R. Tait, A. Dorn, K.A. Nelson, J. Opt. Soc. Am. B 27(11), 2350 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, D. Bossi, IEEE J. Sel. Top. Quantum Electron. 6(1), 69 (2000) CrossRefGoogle Scholar
  17. 17.
    J. Hebling, K.L. Yeh, M.C. Hoffmann, B. Bartal, K.A. Nelson, J. Opt. Soc. Am. B 25(7), B6 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    N.S. Stoyanov, T. Feurer, D.W. Ward, K.A. Nelson, Appl. Phys. Lett. 82(5), 674 (2003) ADSCrossRefGoogle Scholar
  19. 19.
    C.A. Werley, K.A. Nelson, C. Ryan Tait, Am. J. Phys. 80(1), 72 (2012) ADSCrossRefGoogle Scholar
  20. 20.
    N.S. Stoyanov, D.W. Ward, T. Feurer, K.A. Nelson, Nat. Mater. 1(2), 95 (2002) ADSCrossRefGoogle Scholar
  21. 21.
    D. Ward, E. Statz, K. Nelson, Appl. Phys. A, Mater. Sci. Process. 86(1), 49 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    P. Peier, S. Pilz, T. Feurer, J. Opt. Soc. Am. B 26(8), 1649 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    C.A. Werley, K. Fan, A.C. Strikwerda, S.M. Teo, X. Zhang, R.D. Averitt, K.A. Nelson, Opt. Express 20(8), 8551 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    P. Peier, H. Merbold, V. Pahinin, K.A. Nelson, T. Feurer, New J. Phys. 12(1), 013014 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    D.W. Ward, J.D. Beers, T. Feurer, E.R. Statz, N.S. Stoyanov, K.A. Nelson, Opt. Express 29(22), 2671 (2004) Google Scholar
  26. 26.
    B. Fay, Microelectron. Eng. 61–62(null), 11 (2002) CrossRefGoogle Scholar
  27. 27.
    F. Laurell, J. Webjorn, G. Arvidsson, J. Holmberg, J. Lightwave Technol. 10(11), 1606 (1992) ADSCrossRefGoogle Scholar
  28. 28.
    I.E. Barry, G.W. Ross, P.G. Smith, R.W. Eason, G. Cook, Mater. Lett. 37(4–5), 246 (1998) CrossRefGoogle Scholar
  29. 29.
    F.K. Christensen, M. Mullenborn, Appl. Phys. Lett. 66(21), 2772 (1995) ADSCrossRefGoogle Scholar
  30. 30.
    P. Brown, Opt. Mater. 20(2), 125 (2002) ADSCrossRefGoogle Scholar
  31. 31.
    S. Mailis, C. Sones, J. Scott, R. Eason, Appl. Surf. Sci. 247(1–4), 497 (2005) ADSCrossRefGoogle Scholar
  32. 32.
    P. Pronko, S. Dutta, J. Squier, J. Rudd, D. Du, G. Mourou, Opt. Commun. 114(1–2), 106 (1995) ADSCrossRefGoogle Scholar
  33. 33.
    R.R. Gattass, E. Mazur, Nat. Photonics 2(4), 219 (2008) ADSCrossRefGoogle Scholar
  34. 34.
    F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, B.N. Chichkov, Appl. Phys. A, Mater. Sci. Process. 77(2), 229 (2003) ADSGoogle Scholar
  35. 35.
    A. Zoubir, L. Shah, K. Richardson, M. Richardson, Appl. Phys. A, Mater. Sci. Process. 77(2), 311 (2003) ADSGoogle Scholar
  36. 36.
    L. Shah, A.Y. Arai, S.M. Eaton, P.R. Herman, Opt. Express 13(6), 1999 (2005) ADSCrossRefGoogle Scholar
  37. 37.
    A.M. Kowalevicz, V. Sharma, E.P. Ippen, J.G. Fujimoto, K. Minoshima, Opt. Express 30(9), 1060 (2005) Google Scholar
  38. 38.
    S. Preuss, M. Spath, Y. Zhang, M. Stuke, Appl. Phys. Lett. 62(23), 3049 (1993) ADSCrossRefGoogle Scholar
  39. 39.
    C. Schaffer, J. García, E. Mazur, Appl. Phys. A, Mater. Sci. Process. 76(3), 351 (2003) ADSCrossRefGoogle Scholar
  40. 40.
    J. Meijer, K. Du, A. Gillner, D. Hoffmann, V. Kovalenko, T. Masuzawa, A. Ostendorf, R. Poprawe, W. Schulz, CIRP Ann. 51(2), 531 (2002) CrossRefGoogle Scholar
  41. 41.
    X. Liu, D. Du, G. Mourou, IEEE J. Quantum Electron. 33(10), 1706 (1997) ADSCrossRefGoogle Scholar
  42. 42.
    F. Meriche, E. Neissclauss, R. Kremer, A. Boudrioua, E. Dogheche, E. Fogarassy, R. Mouras, A. Bouabellou, Appl. Surf. Sci. 254(4), 1327 (2007) ADSCrossRefGoogle Scholar
  43. 43.
    S. Preuss, A. Demchuk, M. Stuke, Appl. Phys. A, Mater. Sci. Process. 61(1), 33 (1995) ADSCrossRefGoogle Scholar
  44. 44.
    A. Serafetinides, C. Skordoulis, M. Makropoulou, A. Kar, Appl. Surf. Sci. 135(1–4), 276 (1998) ADSCrossRefGoogle Scholar
  45. 45.
    M. Affatigato, K. Tang, R.F. Haglund, C.H. Chen, Appl. Phys. Lett. 65(14), 1751 (1994) ADSCrossRefGoogle Scholar
  46. 46.
    T. Mai, Toward debris-free laser micromachining—industrial laser solutions (2008) Google Scholar
  47. 47.
    H.W. Chong, A. Mitchell, J.P. Hayes, M.W. Austin, Appl. Surf. Sci. 201(1–4), 196 (2002) ADSCrossRefGoogle Scholar
  48. 48.
    K. Williams, R. Muller, J. Microelectromech. Syst. 5(4), 256 (1996) CrossRefGoogle Scholar
  49. 49.
    A. Malshe, D. Deshpande, E. Stach, K. Rajurkar, D. Alexander, CIRP Ann. 53(1), 187 (2004) CrossRefGoogle Scholar
  50. 50.
    L. McCaughan, T.F. Kuech, D.A. Saulys, V.A. Joshkin, A. Chowdhury, C.M. Staus, U.S. Patent 6,545,791, 2002 Google Scholar
  51. 51.
    S.M. Eaton, H. Zhang, P.R. Herman, F. Yoshino, L. Shah, J. Bovatsek, A.Y. Arai, Opt. Express 13(12), 4708 (2005) ADSCrossRefGoogle Scholar
  52. 52.
    C.A. Werley, S.M. Teo, B.K. Ofori-Okai, P. Sivarajah, K.A. Nelson, IEEE Trans. Terahertz Sci. Technol. 3(3), 239 (2013) CrossRefGoogle Scholar
  53. 53.
    F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J.P. Ruske, B. Chichkov, A. Tuennermann, Opt. Express 7(2), 41 (2000) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Prasahnt Sivarajah
    • 1
  • Christopher A. Werley
    • 1
    • 2
  • Benjamin K. Ofori-Okai
    • 1
  • Keith A. Nelson
    • 1
  1. 1.Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUSA

Personalised recommendations