Advertisement

Applied Physics A

, Volume 112, Issue 2, pp 297–304 | Cite as

Comparison of modification of electronic properties of single-walled carbon nanotubes filled with metal halogenide, chalcogenide, and pure metal

  • M. V. Kharlamova
  • L. V. Yashina
  • A. V. Lukashin
Rapid communication

Abstract

In present work, thulium chloride, gallium selenide, bismuth telluride, and silver were encapsulated into the channels of single-walled carbon nanotubes (SWCNTs). The structural properties of obtained nanostructures were studied by high-resolution transmission electron microscopy, and the modification of electronic properties of nanotubes as result of filling their channels with chosen substances was investigated by Raman spectroscopy and X-ray photoelectron spectroscopy. It was shown that the electronic properties of filled SWCNTs depend on the chemical nature of incorporated materials. The encapsulation of TmCl3 and GaSe into the carbon nanotube channels leads to acceptor doping of the SWCNTs, and this effect is more prominent for thulium chloride. The incorporation of bismuth telluride into the nanotube cavities does not result in any modification of their electronic properties. The filling of the nanotube channels with silver leads to donor doping of the single-walled carbon nanotubes.

Keywords

Bi2Te3 SnTe Bismuth Telluride Donor Doping Gallium Selenide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

SWCNTs were synthesized by Dr. A.V. Krestinin (Institute of Problems of Chemical Physics RAS, Chernogolovka, Russia). M.V. Kharlamova thanks Dr. J.J. Niu (Drexel University, USA) and Dr. A. Egorov (Lomonosov Moscow State University, Russia) for the HRTEM measurements.

References

  1. 1.
    S. Iijima, Nature 354, 56 (1991) ADSCrossRefGoogle Scholar
  2. 2.
    T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, Nature 391, 62 (1998) ADSCrossRefGoogle Scholar
  3. 3.
    R.R. He, H.Z. Jin, J. Zhu, Y.J. Yan, X.H. Chen, Chem. Phys. Lett. 298, 170 (1998) ADSCrossRefGoogle Scholar
  4. 4.
    P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K.L. Tan, Phys. Rev. Lett. 82, 2548 (1999) ADSCrossRefGoogle Scholar
  5. 5.
    M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Nature 381, 678 (1996) ADSCrossRefGoogle Scholar
  6. 6.
    A.A. Eliseev, M.V. Kharlamova, M.V. Chernysheva, A.V. Lukashin, Yu.D. Tretyakov, A.S. Kumskov, N.A. Kiselev, Russ. Chem. Rev. 78, 833 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    A.A. Eliseev, L.V. Yashina, M.M. Brzhezinskaya, M.V. Chernysheva, M.V. Kharlamova, N.I. Verbitsky, A.V. Lukashin, N.A. Kiselev, A.S. Kumskov, R.M. Zakalyuhin, J.L. Hutchison, B. Freitag, A.S. Vinogradov, Carbon 48, 2708 (2010) CrossRefGoogle Scholar
  8. 8.
    A.A. Eliseev, L.V. Yashina, N.I. Verbitskiy, M.M. Brzhezinskaya, M.V. Kharlamova, M.V. Chernysheva, A.V. Lukashin, N.A. Kiselev, A.S. Kumskov, B. Freitag, A.V. Generalov, A.S. Vinogradov, Y.V. Zubavichus, E. Kleimenov, M. Nachtegaal, Carbon 50, 4021 (2012) CrossRefGoogle Scholar
  9. 9.
    M. Monthioux, E. Flahaut, J.P. Cleuziou, J. Mater. Res. 21, 2774 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    J. Sloan, J. Hammer, M. Zwiefka-Sibley, M.L.H. Green, Chem. Commun. 3, 347 (1998) CrossRefGoogle Scholar
  11. 11.
    A. Govindaraj, B.C. Satishkumar, M. Nath, C.N.R. Rao, Chem. Mater. 12, 202 (2000) CrossRefGoogle Scholar
  12. 12.
    P. Corio, A.P. Santos, P.S. Santos, M.L.A. Temperini, V.W. Brar, M.A. Pimenta, M.S. Dresselhaus, Chem. Phys. Lett. 383, 475 (2004) ADSCrossRefGoogle Scholar
  13. 13.
    M.V. Kharlamova, J.J. Niu, JETP 115, 485 (2012) ADSCrossRefGoogle Scholar
  14. 14.
    T.W. Chamberlain, T. Zoberbier, J. Biskupek, A. Botos, U. Kaiser, A.N. Khlobystov, Chem. Sci. 3, 1919 (2012) CrossRefGoogle Scholar
  15. 15.
    P.M.F.J. Costa, J. Sloan, T. Rutherford, M.L.H. Green, Chem. Mater. 17, 6579 (2005) CrossRefGoogle Scholar
  16. 16.
    M.V. Kharlamova, J.J. Niu, Appl. Phys. A 109, 25 (2012) ADSCrossRefGoogle Scholar
  17. 17.
    T. Zoberbier, T.W. Chamberlain, J. Biskupek, N. Kuganathan, S. Eyhusen, E. Bichoutskaia, U. Kaiser, A.N. Khlobystov, J. Am. Chem. Soc. 134, 3073 (2012) CrossRefGoogle Scholar
  18. 18.
    M.V. Kharlamova, J.J. Niu, JETP Lett. 95, 314 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    R. Kitaura, R. Nakanishi, T. Saito, H. Yoshikawa, K. Awaga, H. Shinohara, Angew. Chem., Int. Ed. 48, 8298 (2009) CrossRefGoogle Scholar
  20. 20.
    J. Sloan, A.I. Kirkland, J.L. Hutchison, M.L.H. Green, Chem. Commun. 13, 1319 (2002) CrossRefGoogle Scholar
  21. 21.
    M.V. Kharlamova, L.V. Yashina, A.A. Volykhov, J.J. Niu, V.S. Neudachina, M.M. Brzhezinskaya, T.S. Zyubina, A.I. Belogorokhov, A.A. Eliseev, Eur. Phys. J. B 85, 34 (2012) ADSCrossRefGoogle Scholar
  22. 22.
    J. Sloan, S. Friedrichs, R.R. Meyer, A.I. Kirkland, J.L. Hutchison, M.L.H. Green, Inorg. Chim. Acta 330, 1 (2002) CrossRefGoogle Scholar
  23. 23.
    M.V. Kharlamova, A.A. Eliseev, L.V. Yashina, D.I. Petukhov, C.-P. Liu, C.-Y. Wang, D.A. Semenenko, A.I. Belogorokhov, JETP Lett. 91, 196 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    J. Sloan, A.I. Kirkland, J.L. Hutchison, M.L.H. Green, C. R. Phys. 4, 1063 (2003) ADSCrossRefGoogle Scholar
  25. 25.
    M.V. Kharlamova, L.V. Yashina, A.A. Eliseev, A.A. Volykhov, V.S. Neudachina, M.M. Brzhezinskaya, T.S. Zyubina, A.V. Lukashin, Yu.D. Tretyakov, Phys. Status Solidi B 249, 2328 (2012) ADSCrossRefGoogle Scholar
  26. 26.
    E. Philp, J. Sloan, A.I. Kirkland, R.R. Meyer, S. Friedrichs, J.L. Hutchison, M.L.H. Green, Nat. Mater. 2, 788 (2003) ADSCrossRefGoogle Scholar
  27. 27.
    M.V. Kharlamova, Appl. Phys. A 111, 725 (2013) ADSCrossRefGoogle Scholar
  28. 28.
    Z.Y. Wang, H. Li, Z. Liu, Z.J. Shi, J. Lu, K. Suenaga, S.K. Joung, T. Okazaki, Z.N. Gu, J. Zhou, Z.X. Gao, G.P. Li, S. Sanvito, E.G. Wang, S. Iijima, J. Am. Chem. Soc. 132, 13840 (2010) CrossRefGoogle Scholar
  29. 29.
    R. Carter, J. Sloan, A.I. Kirkland, R.R. Meyer, P.J.D. Lindan, G. Lin, M.L.H. Green, A. Vlandas, J.L. Hutchison, J. Harding, Phys. Rev. Lett. 96, 215501 (2006) ADSCrossRefGoogle Scholar
  30. 30.
    L.V. Yashina, A.A. Eliseev, M.V. Kharlamova, A.A. Volykhov, A.V. Egorov, S.V. Savilov, A.V. Lukashin, R. Püttner, A.I. Belogorokhov, J. Phys. Chem. C 115, 3578 (2011) CrossRefGoogle Scholar
  31. 31.
    B.W. Smith, M. Monthioux, D.E. Luzzi, Nature 396, 323 (1998) ADSCrossRefGoogle Scholar
  32. 32.
    A.N. Khlobystov, D.A. Britz, G.A.D. Briggs, Acc. Chem. Res. 38, 901 (2005) CrossRefGoogle Scholar
  33. 33.
    A.N. Khlobystov, ACS Nano 5, 9306 (2011) CrossRefGoogle Scholar
  34. 34.
    H. Shiozawa, T. Pichler, A. Gruneis, R. Pfeiffer, H. Kuzmany, Z. Liu, K. Suenaga, H. Kataura, Adv. Mater. 20, 1443 (2008) CrossRefGoogle Scholar
  35. 35.
    H. Shiozawa, C. Kramberger, R. Pfeiffer, H. Kuzmany, T. Pichler, Z. Liu, K. Suenaga, H. Kataura, S.R.P. Silva, Adv. Mater. 22, 3685 (2010) CrossRefGoogle Scholar
  36. 36.
    T. Takenobu, T. Takano, M. Shiraishi, Y. Murakami, M. Ata, H. Kataura, Y. Achiba, Y. Iwasa, Nat. Mater. 2, 683 (2003) ADSCrossRefGoogle Scholar
  37. 37.
    M. Hulman, H. Kuzmany, P.M.F.J. Costa, S. Friedrichs, M.L.H. Green, Appl. Phys. Lett. 85, 2068 (2004) ADSCrossRefGoogle Scholar
  38. 38.
    N. Thamavaranukup, H.A. Hoppe, L. Ruiz-Gonzalez, P.M.F.J. Costa, J. Sloan, A. Kirkland, M.L.H. Green, Chem. Commun. 15, 1686 (2004) CrossRefGoogle Scholar
  39. 39.
    S. Friedrichs, R.R. Meyer, J. Sloan, A.I. Kirkland, J.L. Hutchison, M.L.H. Green, Chem. Commun. 10, 929 (2001) CrossRefGoogle Scholar
  40. 40.
    M. Monthioux, Carbon 40, 1809 (2002) CrossRefGoogle Scholar
  41. 41.
    A.V. Krestinin, M.B. Kislov, A.G. Ryabenko, in NATO Science series, II. Mathematics, Physics and Chemistry, vol. 169, ed. by S. Gucery, Y.G. Gogotsi, V. Kuznetsov (Kluwer Academic, Dordrecht, 2004), p. 107 Google Scholar
  42. 42.
    A.V. Krestinin, N.A. Kiselev, A.V. Raevskii, A.G. Ryabenko, D.N. Zakharov, G.I. Zvereva, Eurasian Chem. Technol. J. 5, 7 (2003) Google Scholar
  43. 43.
    A. Eliseev, L. Yashina, M. Kharlamova, N. Kiselev, in Electronic Properties of Carbon Nanotubes, ed. by J.M. Marulanda (InTech, Rijeka, 2011), p. 127 Google Scholar
  44. 44.
    H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Synth. Met. 103, 2555 (1999) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. V. Kharlamova
    • 1
  • L. V. Yashina
    • 2
    • 3
  • A. V. Lukashin
    • 1
  1. 1.Department of Materials ScienceMoscow State UniversityMoscowRussia
  2. 2.Department of ChemistryMoscow State UniversityMoscowRussia
  3. 3.Rare Metals Institute “GIREDMET”MoscowRussia

Personalised recommendations