Advertisement

Applied Physics A

, Volume 112, Issue 3, pp 747–757 | Cite as

Multi-response analysis in the material characterisation of electrospun poly (lactic acid)/halloysite nanotube composite fibres based on Taguchi design of experiments: fibre diameter, non-intercalation and nucleation effects

  • Yu Dong
  • Thomas Bickford
  • Hazim J. Haroosh
  • Kin-Tak Lau
  • Hitoshi Takagi
Article

Abstract

Poly (lactic acid) (PLA)/halloysite nanotube (HNT) composite fibres were prepared by using a simple and versatile electrospinning technique. The systematic approach via Taguchi design of experiments (DoE) was implemented to investigate factorial effects of applied voltage, feed rate of solution, collector distance and HNT concentration on the fibre diameter, HNT non-intercalation and nucleation effects. The HNT intercalation level, composite fibre morphology, their associated fibre diameter and thermal properties were evaluated by means of X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), imaging analysis and differential scanning calorimetry (DSC), respectively. HNT non-intercalation phenomenon appears to be manifested as reflected by the minimal shift of XRD peaks for all electrospun PLA/HNT composite fibres. The smaller-fibre-diameter characteristic was found to be sequentially associated with the feed rate of solution, collector distance and applied voltage. The glass transition temperature (T g) and melting temperature (T m) are not highly affected by varying the material and electrospinning parameters. However, as the indicator of the nucleation effect, the crystallisation temperature (T c) of PLA/HNT composite fibres is predominantly impacted by HNT concentration and applied voltage. It is evident that HNT’s nucleating agent role is confirmed when embedded with HNTs to accelerate the cold crystallisation of composite fibres. Taguchi DoE method has been found to be an effective approach to statistically optimise critical parameters used in electrospinning in order to effectively tailor the resulting physical features and thermal properties of PLA/HNT composite fibres.

Keywords

Feed Rate Fibre Diameter Composite Fibre Cold Crystallisation Average Fibre Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to acknowledge the financial support from Curtin Internal Research Grants (IRG) 2010 (project No.: 47604) to undertake this work. The authors are also indebted to Ms. Elaine Millers and Dr. Cat Kealley from Centre for Materials Research at Curtin University for technical assistance with SEM and XRD, respectively.

References

  1. 1.
    Y.A. Dzenis, Science 304, 1917 (2004) CrossRefGoogle Scholar
  2. 2.
    D.H. Reneker, I. Chun, Nanotechnology 7, 216 (1996) ADSCrossRefGoogle Scholar
  3. 3.
    W.E. Teo, S. Ramakrishna, Compos. Sci. Technol. 69, 1804 (2009) CrossRefGoogle Scholar
  4. 4.
    Y. Zhou, D. Yang, X. Chen, Q. Xu, F. Lu, J. Nie, Biomacromolecules 9, 349 (2008) CrossRefGoogle Scholar
  5. 5.
    H.M. Powell, S.T. Boyce, Tissue Eng., Part A 15, 2177 (2009) CrossRefGoogle Scholar
  6. 6.
    M.M. Bergshoef, G.J. Vancso, Adv. Mater. 11, 1362 (1999) CrossRefGoogle Scholar
  7. 7.
    E. Luong-Van, L. Grøndahl, K.N. Chua, K.W. Leong, V. Nurcombe, S.M. Cool, Biomaterials 27, 2042 (2006) CrossRefGoogle Scholar
  8. 8.
    J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, L. Yang, X. Jing, J. Control. Release 92, 227 (2003) CrossRefGoogle Scholar
  9. 9.
    D.G. Yu, X.X. Shen, C. Branford-White, K. White, L.M. Zhu, S.W.A. Bligh, Nanotechnology 20, 055104 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003) CrossRefGoogle Scholar
  11. 11.
    Y.C. Ahn, S.K. Park, G.T. Kim, Y.J. Hwang, C.G. Lee, H.S. Shin, J.K. Lee, Curr. Appl. Phys. 6, 1030 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    R. Gopal, S. Kaur, Z. Ma, C. Chan, S. Ramakrishna, T. Matsuura, J. Membr. Sci. 281, 581 (2006) CrossRefGoogle Scholar
  13. 13.
    E. Joussein, S. Petit, J. Churchman, B. Theng, D. Righi, B. Delvaux, Clay Miner. 40, 383 (2005) CrossRefGoogle Scholar
  14. 14.
    C.C. Harvey, H.H. Murray, Clay Miner. Soc. Spec. Pub. 1, 233 (1990) Google Scholar
  15. 15.
    M. Liu, B. Guo, M. Du, F. Chen, D. Jia, Polymer 50, 3022 (2009) CrossRefGoogle Scholar
  16. 16.
    Z. Jia, Y. Luo, S. Yang, B. Guo, M. Du, D. Jia, Chin. J. Polym. Sci. 27, 857 (2009) CrossRefGoogle Scholar
  17. 17.
    R. Qi, R. Guo, M. Shen, X. Cao, L. Zhang, J. Xu, J. Yu, X. Shi, J. Mater. Chem. 20, 10622 (2010) CrossRefGoogle Scholar
  18. 18.
    Y.M. Lvov, D.G. Shchukin, H. Möhwald, R.R. Price, ACS Nano 2, 814 (2008) CrossRefGoogle Scholar
  19. 19.
    J.M. Deitzel, J. Kleinmeyer, D. Harris, N.C.B. Tan, Polymer 42, 261 (2001) CrossRefGoogle Scholar
  20. 20.
    E. Zussman, A.L. Yarin, D. Weihs, Exp. Fluids 33, 315 (2002) CrossRefGoogle Scholar
  21. 21.
    Y. Dong, D. Chaudhary, H. Haroosh, T. Bickford, J. Mater. Sci. 46, 6148 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    A.H. Touny, J.G. Lawrence, A.D. Jones, S.B. Bhaduri, J. Mater. Res. 25, 857 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    X. Jia, J. Zhang, W. Gao, H. Liang, H. Wang, J. Li, Mater. Lett. 63, 658 (2009) CrossRefGoogle Scholar
  24. 24.
    Y. Dong, D. Bhattacharyya, Composites, Part A, Appl. Sci. Manuf. 39, 1177 (2008) CrossRefGoogle Scholar
  25. 25.
    R. Khosrokhavar, G. Naderi, G.R. Bakhshandeh, M.H.R. Ghoreishy, Iran. Polym. J. 20, 41 (2011) Google Scholar
  26. 26.
    S.H. Park, Robust Design and Analysis for Quality Engineering (Chapman & Hall, London, 1996) Google Scholar
  27. 27.
    S. Deng, J. Zhang, L. Ye, Compos. Sci. Technol. 69, 2497 (2009) CrossRefGoogle Scholar
  28. 28.
    M. Murariu, A.L. Dechief, Y. Paint, S. Peeterbroeck, L. Bonnaud, P. Dubois, J. Polym. Environ. 20, 932 (2012) CrossRefGoogle Scholar
  29. 29.
    K. Prashantha, B. Lecouvet, M. Sclavons, M.F. Lacrampe, P. Krawczak, J. Appl. Polym. Sci. 128, 1895 (2012) Google Scholar
  30. 30.
    W.S. Chow, S.K. Lok, J. Therm. Anal. Calorim. 95, 627 (2009) CrossRefGoogle Scholar
  31. 31.
    J.T. Yoon, Y.G. Jeong, S.C. Lee, B.G. Min, Polym. Adv. Technol. 20, 631 (2009) CrossRefGoogle Scholar
  32. 32.
    J.H. Lee, T.G. Park, H.S. Park, D.S. Lee, Y.K. Lee, S.C. Yoon, J.D. Nam, Biomaterials 24, 2773 (2003) CrossRefGoogle Scholar
  33. 33.
    G.H. Lee, J.C. Song, K.B. Yoon, Macromol. Res. 18, 571 (2010) CrossRefGoogle Scholar
  34. 34.
    A. Saraf, G. Lozier, A. Haesslein, F.K. Kasper, R.M. Raphael, L.S. Baggett, A.G. Mikos, Tissue Eng., Part C Methods 15, 333 (2009) CrossRefGoogle Scholar
  35. 35.
    Y. Dong, Multi-scale effects on deformation mechanisms of polymer nanocomposite fibres: experimental characterisation and numerical study. Ph.D. thesis, The University of Auckland, New Zealand, 2008 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yu Dong
    • 1
  • Thomas Bickford
    • 1
  • Hazim J. Haroosh
    • 2
  • Kin-Tak Lau
    • 3
  • Hitoshi Takagi
    • 4
  1. 1.Department of Mechanical EngineeringCurtin UniversityPerthAustralia
  2. 2.Department of Chemical EngineeringCurtin UniversityPerthAustralia
  3. 3.Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityKowloonChina
  4. 4.Advanced Materials Division, Institute of Technology and ScienceThe University of TokushimaTokushimaJapan

Personalised recommendations