Applied Physics A

, Volume 112, Issue 3, pp 561–567 | Cite as

Near-IR photoluminescence from Si/Ge nanowire-grown silicon wafers: effect of HF treatment



We present the room-temperature near-infrared (NIR) photoluminescence (PL) properties of Si/Ge nanowire (NW)-grown silicon wafers which were treated by vapor of HF:HNO3 chemical mixture. This treatment activates or enhances the PL intensity in the NIR region ranging from 1000 nm to 1800 nm. The PL consists of a silicon band-edge emission and a broad composite band which is centered at around 1400–1600 nm. The treatment modifies the wafer surface particularly at defect sites especially pits around NWs and NW surfaces by etching and oxidation of Si and Ge. This process can induce spatial confinement of carriers where band-to-band (BB) emission is the dominant property in Si-capped strained Si/Ge NW-grown wafers. Strong signals were observed at sub-band-gap energies in Ge-capped Si/Ge NW-grown wafers. It was found that NIR PL is a competitive property between the Si BB transition and deep-level emission, which is mainly attributable to Si-related defects, Ge dots and strained Ge layers. The enhancement in BB and deep-level PL is discussed in terms of strain, oxygen-related defects, dot formation and carrier-confinement effects. The results demonstrate the effectiveness of this method in enhancing and tuning NIR PL properties for possible applications.



This work was supported by the TUBITAK (TBAG) bilateral program under Contract No. 107T624 and the BMBF German Federal Ministry of Education and Research (Grant No. 03Z2HN12).


  1. 1.
    N.D. Zakharov, V.G. Talalaev, P. Werner, A.A. Tonkikh, G.E. Cirlin, Appl. Phys. Lett. 83, 3084 (2003) ADSCrossRefGoogle Scholar
  2. 2.
    Y.M. Niquet, G. Allan, C. Delerue, M. Lanoo, Appl. Phys. Lett. 77, 1182 (2000) ADSCrossRefGoogle Scholar
  3. 3.
    Y.-H. Kuo, Y.-S. Li, Appl. Phys. Lett. 94, 121101 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    G.E. Cirlin, V.G. Talalaev, V.A. Egorov, N.D. Zakharov, P. Werner, N.N. Ledentsov, V.M. Ustinov, Physica E 17, 131 (2003) ADSCrossRefGoogle Scholar
  5. 5.
    M.W. Dashiell, U. Denker, C. Müller, G. Costantini, C. Manzano, O.G. Schmidt, Appl. Phys. Lett. 80, 1279 (2002) ADSCrossRefGoogle Scholar
  6. 6.
    U. Menczigar, G. Abstreiter, J. Olajos, H. Grimmeiss, H. Kibbel, H. Presting, E. Kasper, Phys. Rev. B 47, 4099 (1993) ADSCrossRefGoogle Scholar
  7. 7.
    W.D.A.M. de Boer, D. Timmerman, K. Dohnalova, I.N. Yassievich, H. Zhang, W.J. Buma, T. Gregorkiewicz, Nat. Nanotechnol. 5, 878 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    J. Liu, X. Sun, D. Pan, X. Wang, L.C. Kimerlang, T.L. Koch, J. Michel, Opt. Express 15, 11272 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    V.G. Talalaev, G.E. Cirlin, A.A. Tonkikh, N.D. Zakharov, P. Werner, U. Gösele, J.W. Tomm, T. Elsaesser, Nanoscale Res. Lett. 1, 137 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    S. Kalem, O. Yavuzcetin, Opt. Express 6, 7 (2000) ADSCrossRefGoogle Scholar
  11. 11.
    P. Werner, N.D. Zakharov, G. Gerth, L. Schubert, U. Gösele, Int. J. Mater. Res. 97, 7 (2006) Google Scholar
  12. 12.
    E.S. Kooij, K. Butter, J.J. Kelly, Electrochem. Solid State Lett. 2, 178 (1999) CrossRefGoogle Scholar
  13. 13.
    E.Ö. Sveinbjörnsson, J. Weber, Thin Solid Films 294, 201 (1997) ADSCrossRefGoogle Scholar
  14. 14.
    K. Bothe, R.J. Folster, J.D. Murphy, Appl. Phys. Lett. 101, 032107 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    M. Tajima, Y. Iwata, F. Okayama, H. Toyota, H. Onodera, T. Sekiguchi, J. Appl. Phys. 111, 113523 (2012) ADSCrossRefGoogle Scholar
  16. 16.
    S. Kalem, P. Werner, B. Nilsson, V. Talalaev, M. Hagberg, O. Arthursson, U. Sodervall, Nanotechnology 20, 445303 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    H. Cui, C.X. Wang, G.W. Yang, Nano Lett. 8, 2731 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    C.T. Kirk, Phys. Rev. B 38, 1255 (1988) ADSCrossRefGoogle Scholar
  19. 19.
    R. Chivas, S. Yerci, R. Li, L. Dal Negro, T. Morse, Opt. Mater. 33, 1829 (2011) ADSCrossRefGoogle Scholar
  20. 20.
    S. Kalem, Ö. Arthursson, I. Romandic, Thin Solid Films 518, 2377 (2010) ADSCrossRefGoogle Scholar
  21. 21.
    S.H. Choi, H.Y. Kim, Y.-K. Hong, J.-Y. Koo, J. Seok, J. Kim, J. Korean Phys. Soc. 42, S120 (2003) Google Scholar
  22. 22.
    L. Tsybeskov, K.L. Moore, D.G. Hall, P.M. Fauchet, Phys. Rev. B 54, R8361 (1996) ADSCrossRefGoogle Scholar
  23. 23.
    I. Tarasov, S. Ostapenko, C. Haessler, E.U. Reisner, Mater. Sci. Eng. B 71, 51 (2000) CrossRefGoogle Scholar
  24. 24.
    O. Demichel, F. Oehler, V. Calvo, P. Noé, N. Pauc, P. Gentile, P. Ferret, T. Baron, N. Magnea, Physica E 41, 963 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    D.J. Stowe, S.A. Galloway, S. Senkader, K. Mallik, J. Falster, P.R. Wilshaw, Physica B 340–342, 710 (2003) CrossRefGoogle Scholar
  26. 26.
    K.W. Sun, S.H. Sue, C.W. Liu, Physica E 28, 525 (2005) ADSCrossRefGoogle Scholar
  27. 27.
    G. Jia, M. Kittler, Z. Su, D. Yang, J. Sha, Phys. Status Solidi A 203, R55 (2006) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.National Research Institute of Electronics and Cryptology TÜBITAK-BILGEMKocaeliTurkey
  2. 2.Department of Experimental PhysicsMax Planck InstituteHalle (Saale)Germany
  3. 3.ZIK ‘SiLi-nano’Martin-Luther-Universität (Halle)Halle (Saale)Germany

Personalised recommendations