Applied Physics A

, Volume 111, Issue 3, pp 675–687 | Cite as

Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment

  • D. S. IvanovEmail author
  • A. I. Kuznetsov
  • V. P. Lipp
  • B. Rethfeld
  • B. N. Chichkov
  • M. E. Garcia
  • W. Schulz
Invited paper


Nanoprocessing of materials using ultrashort laser pulses involves a number of concurrent fundamental physical processes. Due to different time and spatial scales of activation, however, these processes are difficult to study within the frames of a single computational model on one hand, and yet not possible to isolate in the experimental analysis on the other hand. In their detailed investigation, the transient character of the nonequilibrium states of matter induced with a short laser pulse hampers the applicability of continuum approaches, but classical molecular dynamics simulations are usually limited in the system sizes. In this work, a molecular dynamics based model coupled to a continuum description of the photo-excited free carrier’s dynamics and implemented in parallel algorithm is extended to the scale directly accessible in the experiment. This allows for the first time a direct comparison to experimental data. The essential mechanisms responsible for the short laser pulse surface nanostructuring are analyzed in the complex dynamics of competing processes simultaneously involved into the nanostructures generation process. The modeling and experiment show a very good agreement and predict a new opportunity for fabrication of nanoparticle structures and the surface subpatterning.


Short Laser Pulse Embed Atom Method Reflectivity Function Local Order Parameter Hydrodynamic Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the Juelich Super Computer Facility (Juelich, Germany) team for the technical support provided for super large scale parallel simulations. The presented work was done under financial support due to DFG grants IV 122/1-1 and IV 122/1-2. Professor Leonid Zhigilei, Dr. Larissa Juschkin, Dirk Wortmann, Martin Reininghaus, and Jürgen Koch are sincerely acknowledged for stimulating discussions.


  1. 1.
    C. Unger, M. Gruene, L. Koch, J. Koch, B.N. Chichkov, Time-resolved imaging of hydrogel printing via laser-induced forward transfer. Appl. Phys. A 103, 271 (2011) ADSCrossRefGoogle Scholar
  2. 2.
    A.I. Kuznetsov, J. Koch, B.N. Chichkov, Laser-induced backward transfer of gold nanodroplets. Opt. Express 17, 18820 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    P.P. Pronko, S.K. Dutta, J. Squier, J.V. Rudd, D. Du, G. Mourou, Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses. Opt. Commun. 114, 106–110 (1995) ADSCrossRefGoogle Scholar
  4. 4.
    F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, B.N. Chichkov, Towards nanostructuring with femtosecond laser pulses. Appl. Phys. A 77, 229–235 (2003) ADSGoogle Scholar
  5. 5.
    J. Jersch, F. Demming, J. Hildenhagen, K. Dickmann, Nano-material processing with laser radiation in the near field of a scanning probe tip. Opt. Laser Technol. 29, 433–437 (1997) ADSCrossRefGoogle Scholar
  6. 6.
    A. Chimmalgi, T.Y. Choi, C.P. Grigoropoulos, K. Komvopoulos, Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy. Appl. Phys. Lett. 82, 1146–1148 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    J. Boneberg, H.-J. Münzer, M. Tresp, M. Ochmann, P. Leiderer, The mechanism of nanostructuring upon nanosecond laser irradiation of a STM tip. Appl. Phys. A 67, 381–384 (1998) ADSCrossRefGoogle Scholar
  8. 8.
    S.M. Huang, M.H. Hong, Y.F. Lu, B.S. Lukyanchuk, W.D. Song, T.C. Chong, Pulsed laser-assisted surface structuring with optical near-field enhanced effects. J. Appl. Phys. 91, 3268–3274 (2002) ADSCrossRefGoogle Scholar
  9. 9.
    S.M. Huang, M.H. Hong, B. Lukiyanchuk, T.C. Chong, Nanostructures fabricated on metal surfaces assisted by laser with optical near field effects. Appl. Phys. A 77, 293–296 (2003) ADSGoogle Scholar
  10. 10.
    Y. Lu, S.C. Chen, Nanopatterning of a silicon surface by near-field enhanced laser irradiation. Nanotechnology 14, 505–508 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    F. Korte, J. Koch, B.N. Chichkov, Formation of microbumps and nanojets on gold targets by femtosecond laser pulses. Appl. Phys. A 79, 879 (2004) ADSCrossRefGoogle Scholar
  12. 12.
    A.I. Kuznetsov, J. Koch, B.N. Chichkov, Nanostructuring of thin gold films by femtosecond lasers. Appl. Phys. A 94, 221 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    Y. Nakata, T. Okada, M. Maeda, Nano-sized hollow bump array generated by single femtosecond laser pulse. Jpn. J. Appl. Phys. 42, L1452 (2003) ADSCrossRefGoogle Scholar
  14. 14.
    Y. Nakata, N. Miyanaga, T. Okada, Effect of pulse width and fluence of femtosecond laser on the size of nanobump array. Appl. Surf. Sci. 253, 6555 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    A. Fadeeva, V.K. Truong, M. Stiesch, B.N. Chichkov, R.J. Crawford, J. Wang, E.P. Ivanova, Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation. Langmuir 27, 3012 (2011) CrossRefGoogle Scholar
  16. 16.
    Y.P. Meshcheryakov, N.M. Bulgakova, Thermoelastic modeling of microbump and nanojet formation on nanosize gold films under femtosecond laser irradiation. Appl. Phys. A 82, 363 (2005) ADSCrossRefGoogle Scholar
  17. 17.
    S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov. Phys. JETP 39, 375 (1974) ADSGoogle Scholar
  18. 18.
    B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S.I. Anisimov, Ultrafast thermal melting of laser-excited solids by homogeneous nucleation. Phys. Rev. B 65, 092103 (2002) ADSCrossRefGoogle Scholar
  19. 19.
    K. Sokolowski-Tinten, J. Bialkowski, M. Boing, Thermal and nonthermal melting of gallium arsenide after femtosecond laser excitation. Phys. Rev. B 58, R11805 (1998) ADSCrossRefGoogle Scholar
  20. 20.
    M.B. Agranat, S.I. Ashitkov, V.E. Fortov, A.V. Kirillin, A.V. Kostanovskii, S.I. Anisimov, P.S. Kondratenko, Use of optical anisotropy for study of ultrafast phase transformations at solid surfaces. Appl. Phys. A 69, 637 (1999) ADSCrossRefGoogle Scholar
  21. 21.
    A.I. Kuznetsov, C. Unger, J. Koch, B.N. Chichkov, Laser-induced jet formation and droplet ejection from thin metal films. Appl. Phys. A 106, 479 (2012) ADSCrossRefGoogle Scholar
  22. 22.
    C. Unger, J. Koch, L. Overmeyer, B.N. Chichkov, Time-resolved studies of femtosecond-laser induced melt dynamics. Opt. Express 20, 24864 (2012) ADSCrossRefGoogle Scholar
  23. 23.
    K. Lu, Y. Li, Homogeneous nucleation catastrophe as a kinetic stability limit for superheated crystal. Phys. Rev. Lett. 80, 4474 (1998) ADSCrossRefGoogle Scholar
  24. 24.
    D.S. Ivanov, L.V. Zhigilei, Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys. Rev. B 68, 064114 (2003) ADSCrossRefGoogle Scholar
  25. 25.
    D. Wortmann, J. Koch, M. Reininghaus, C. Unger, C. Hulverscheidt, D.S. Ivanov, B.N. Chichkov, Experimental and theoretical investigation on fs-laser-induced nanostructure formation on thin gold films. J. Laser Appl. 24, 042017 (2012) ADSCrossRefGoogle Scholar
  26. 26.
    D.S. Ivanov, B.C. Rethfeld, G.M. O’Connor, T.J. Glynn, A.N. Volkov, L.V. Zhigilei, The mechanism of nanobump formation in femtosecond pulse laser nanostructuring of thin metal films. Appl. Phys. A 92, 791 (2008) ADSCrossRefGoogle Scholar
  27. 27.
    D.S. Ivanov, L.V. Zhigilei, Effect of pressure relaxation on the mechanisms of short-pulse laser melting. Phys. Rev. Lett. 91, 105701 (2003) ADSCrossRefGoogle Scholar
  28. 28.
    S.-S. Wellershoff, J. Hohlfeld, J. Güdde, E. Matthias, The role of electron–phonon coupling in femtosecond laser damage of metals. Appl. Phys. A 69, S99 (1999) ADSGoogle Scholar
  29. 29.
    C. Schäfer, H.M. Urbassek, L.V. Zhigilei, B.J. Garrison, Pressure-transmitting boundary conditions for molecular dynamics simulations. Compos. Mater. Sci. 24, 421 (2002) CrossRefGoogle Scholar
  30. 30.
    V.V. Zhakhovskii, N.A. Inogamov, Yu.V. Petrov, S.I. Ashitkov, K. Nishihara, Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials. Appl. Surf. Sci. 255, 9592 (2009) ADSCrossRefGoogle Scholar
  31. 31.
    W.F. Gale, T.C. Totemeier, Smithell’s Metal Reference Book, 8th edn. (Butterworth-Heinemann, Oxford, 2004) Google Scholar
  32. 32.
    J.R. Morris, X. Song, The melting lines of model systems calculated from coexistence simulations. J. Chem. Phys. 116, 9352 (2002) ADSCrossRefGoogle Scholar
  33. 33.
    B.Y. Mueller, B. Rethfeld, Relaxation dynamics in laser-excited metals under non-equilibrium conditions. Phys. Rev. B 87, 035139 (2013) ADSCrossRefGoogle Scholar
  34. 34.
    Z. Lin, L.V. Zhigilei, V. Celli, Electron–phonon coupling and electron heat capacity of metals under conditions of strong electron–phonon nonequilibrium. Phys. Rev. B 77, 075133 (2008) ADSCrossRefGoogle Scholar
  35. 35.
    S.I. Anisimov, B. Rethfeld, On the theory of ultrashort laser pulse interaction with a metal. Proc. SPIE 3093, 192 (1997) ADSCrossRefGoogle Scholar
  36. 36.
    H.E. Elsayed-Ali, T. Juhasz, G.O. Smith, W.E. Bron, Femtosecond thermoreflectivity and thermotransmissivity of polycrystalline and single-crystalline gold films. Phys. Rev. B 43, 4488 (1991) ADSCrossRefGoogle Scholar
  37. 37.
    J.L. Hostetler, A.N. Smith, D.M. Czajkowsky, P.M. Norris, Measurement of the electron–phonon coupling factor dependence on film thickness and grain size in Au, Cr, and Al. Appl. Opt. 38, 3614 (1999) ADSCrossRefGoogle Scholar
  38. 38.
    R.H.M. Groeneveld, R. Sprik, A. Lagendijk, Femtosecond spectroscopy of electron–electron and electron–phonon energy relaxation in Ag and Au. Phys. Rev. B 51, 11433 (1995) ADSCrossRefGoogle Scholar
  39. 39.
    J. Hohlfeld, S.-S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, E. Matthias, Electron and lattice dynamics following optical excitation of metals. Chem. Phys. 251, 237 (2000) CrossRefGoogle Scholar
  40. 40.
    L.D. Landau, Theory of Fermi-liquids. Zh. Eksp. Teor. Fiz. 30, 1058 (1956) [Sov. Phys. JETP 3, 920 (1957)] Google Scholar
  41. 41.
    P.E. Hopkins, Influence of electron-boundary scattering on thermoreflectance calculations after intra- and interband transitions induced by short-pulsed laser absorption. Phys. Rev. B 81, 035413 (2010) MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    J.J. Gilvarry, The Lindemann and Gruneisen laws. Phys. Rev. 102, 308 (1956) ADSCrossRefGoogle Scholar
  43. 43.
    C.L. Kelchner, S.J. Plimpton, J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085 (1998) ADSCrossRefGoogle Scholar
  44. 44.
    A.I. Kuznetsov, A.B. Evlyukhin, C. Reinhardt, A. Seidel, R. Kiyan, W. Cheng, A. Ovsianikov, B.N. Chichkov, Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applications. J. Opt. Soc. Am. B 12, B130 (2009) CrossRefGoogle Scholar
  45. 45.
    A.I. Kuznetsov, R. Kiyan, B.N. Chichkov, Laser fabrication of 2D and 3D metal nanoparticle structures and arrays. Opt. Express 18, 21198 (2010) ADSCrossRefGoogle Scholar
  46. 46.
    D.S. Ivanov, B.C. Rethfeld, G.M. O’Connor, T.J. Glynn, Z. Lin, A.N. Volkov, L.V. Zhigilei, Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film. J. Appl. Phys. 107, 013519 (2010) ADSCrossRefGoogle Scholar
  47. 47.
    L.V. Zhigilei, Z. Lin, D.S. Ivanov, Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion. J. Chem. Phys. 113, 11892 (2009) Google Scholar
  48. 48.
    Z. Lin, E.M. Bringa, E. Leveugle, L.V. Zhigilei, Molecular dynamics simulation of laser melting of nanocrystalline Au. J. Phys. Chem. C 114, 5686 (2010) CrossRefGoogle Scholar
  49. 49.
    J.L. Hostetler, A.N. Smith, P.M. Norris, Thin film thermal conductivity and thickness measurements using picosecond ultrasonics. Microscale Thermophys. Eng. 1, 237 (1997) CrossRefGoogle Scholar
  50. 50.
    R. Wagner, J. Gottmann, Sub-wavelength ripple formation on various materials induced by tightly focused femtosecond laser radiation. J. Phys. Conf. Ser. 59, 333 (2007) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • D. S. Ivanov
    • 1
    • 4
    Email author
  • A. I. Kuznetsov
    • 2
    • 3
  • V. P. Lipp
    • 1
    • 4
  • B. Rethfeld
    • 1
  • B. N. Chichkov
    • 2
  • M. E. Garcia
    • 4
  • W. Schulz
    • 5
  1. 1.Technical University of KaiserslauternKaiserslauternGermany
  2. 2.Laser Zentrum HannoverHannoverGermany
  3. 3.Data Storage InstituteSingaporeSingapore
  4. 4.University of KasselKasselGermany
  5. 5.Institute of Laser Technique FraunhoferAachenGermany

Personalised recommendations