Applied Physics A

, Volume 111, Issue 3, pp 799–805 | Cite as

Generation of transparent conductive electrodes by laser consolidation of LIFT printed ITO nanoparticle layers

  • M. BaumEmail author
  • H. Kim
  • I. Alexeev
  • A. Piqué
  • M. Schmidt


Indium tin oxide (ITO) is one of the few materials available that display a high transparency in the visible wavelength region and at the same time can conduct electrical currents. Thus it is widespread in many optoelectronic applications such as displays or solar cells. Layers of this material are commonly deposited by vacuum deposition methods which are not compatible with inexpensive production methods such as roll-to-roll processing or printed electronics in general. In this work, we demonstrate the generation of arbitrarily shaped ITO layers by laser induced forward transfer of ITO nanoparticles. The transferred particle ink volumes range in the sub picoliter regime. Feature sizes as small as 20 μm are produced without any outward flow or “coffee-stain” effects. Furthermore, the feasibility of excimer laser consolidation of these nanoparticulate layers in ambient air for the generation of dense ITO films is shown. Conductivities of over 4000 Ω−1 m−1 were achieved. The presented methods are a promising alternative for the generation of transparent conducting layers for the inexpensive production of optoelectronics.


Sheet Resistance Particle Layer Ribbon Surface Laser Induce Forward Transfer Visible Wavelength Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The support of the Deutsche Forschungsgemeinschaft (DFG, Graduiertenkolleg 1161/2) is gratefully acknowledged. Additionally, we are thankful for the support by Evonik Industries AG and also for the production of the particle suspensions by Daniel Kilian at the Institute of Particle Technology at the University of Erlangen. Moreover, the authors gratefully acknowledge funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German Research Foundation (DFG) in the framework of the German excellence initiative as well as the support from the Office of Naval Research (ONR).


  1. 1.
    J.C. Manifacier, Thin metallic oxides as transparent conductors. Thin Solid Films 90, 287 (1982) ADSCrossRefGoogle Scholar
  2. 2.
    M. Groß, Druckbare, nanopartikiläre Indiumzinnoxidschichten für optoelektronische Anwendungen. Dissertation, Friedrich-Alexander-Universität Erlangen-Nuremberg, 2009, p. 33 Google Scholar
  3. 3.
    T. Maruyama, K. Fukui, Indium tin oxide thin films prepared by chemical vapour deposition. Thin Solid Films 203, 297 (1991) ADSCrossRefGoogle Scholar
  4. 4.
    M. Penza, S. Cozzi, M.A. Tagliente, L. Mirenghi, C. Martucci, A. Quirini, Characterization of transparent and conductive electrodes of indium tin oxide thin films by sequential reactive evaporation. Thin Solid Films 349, 71 (1999) ADSCrossRefGoogle Scholar
  5. 5.
    A. Kachouane, M. Addou, A. Bougrine, B. El Idrissi, R. Messoussi, M. Regragui, J.C. Bérnede, Preparation and characterisation of tin-doped indium oxide films. Mater. Chem. Phys. 70, 285 (2001) CrossRefGoogle Scholar
  6. 6.
    K.K. Banger, Y. Yamashita, K. Mori, R.L. Peterson, T. Leedham, J. Rickard, H. Sirringhaus, Low-temperature, high-performance solution-processed metal oxide thin-films transistors formed by a ‘sol-gel on chip’ process. Nat. Mater. 10, 45 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    M. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, Low temperature fabrication of high-performance metal oxide thin-film electronics via combustion procession. Nat. Mater. 10, 382 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    J.-S. Lee, M.V. Kovalenko, J. Huang, D.S. Chung, D.V. Talapin, Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotechnol. 6, 348 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    S. Walther, S. Schäfer, M.P.M. Jank, H. Thiem, W. Peukert, L. Frey, H. Ryssel, Influence of annealing temperature and measurement ambient on TFTs based on gas phase synthesized ZnO nanoparticles. Microelectron. Eng. 87, 2312 (2010) CrossRefGoogle Scholar
  10. 10.
    M. Hwang, B. Jeong, J. Moon, S.-K. Chun, J. Kim, Inkjekt-printing of indium tin oxide (ITO) thin films for transparent conducting electrodes. Mater. Sci. Eng. B 176, 1128 (2011) CrossRefGoogle Scholar
  11. 11.
    A. Piqué, R.C.Y. Auyeung, H. Kim, K.M. Metkus, S.A. Mathews, Digital microfabrication by laser decal transfer. J. Laser Micro Nanoeng. 3, 163 (2008) CrossRefGoogle Scholar
  12. 12.
    H. Kim, R.c.Y. Auyeung, S.H. Lee, A.L. Huston, A. Piqué, Laser printed interdigitated Ag electrodes for organic thin-film transistors. J. Phys. D, Appl. Phys. 43, 085101 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    H. Kim, J.S. Melinger, A. Khachatrian, N.A. Charipar, R.C.Y. Auyeung, A. Piqué, Fabrication of Terahertz metamaterials by laser printing. Opt. Lett. 35, 4039 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    C.T. Lynch, CRC Handbook of Materials Science, vol. 1 (CRC, Boca Raton, 1974), p. 348 Google Scholar
  15. 15.
    M. Baum, S. Polster, M.P.M. Jank, I. Alexeev, L. Frey, M. Schmidt, Efficient laser induced consolidation of nanoparticulate ZnO thin films with reduced thermal budget. Appl. Phys. A 107, 269 (2012) ADSCrossRefGoogle Scholar
  16. 16.
    M. Mahajeri, A. Schneider, M. Baum, T. Rechtenwald, M. Voigt, M. Schmidt, W. Peukert, Production of dispersions with small particle size from commercial indium tin oxide powder for the deposition of highly conductive and transparent films. Thin Solid Films 520, 5741 (2012) CrossRefGoogle Scholar
  17. 17.
    Y. Noguchi, T. Sekitani, T. Yokota, T. Someya, Direct inkjet printing of silver electrodes on organic semiconductors for thin-film transistors with top contact geometry. Appl. Phys. Lett. 93, 043303 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    M. Duocastella, H. Kim, P. Serra, A. Piqué, Optimization of laser printing of nanoparticles suspensions for microelectronic applications. Appl. Phys. A 106, 471 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    G. Legeay, X. Castel, R. Benzerga, J. Pinel, Excimer laser beam/ITO interaction: from laser processing to surface reaction. Phys. Status Solidi C 5, 3248 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Baum
    • 1
    • 2
    Email author
  • H. Kim
    • 3
  • I. Alexeev
    • 1
    • 2
  • A. Piqué
    • 3
  • M. Schmidt
    • 1
    • 2
  1. 1.Institute of Photonic TechnologiesFriedrich-Alexander-University Erlangen-NurembergErlangenGermany
  2. 2.Erlangen Graduate School in Advanced Optical Technologies (SAOT)Friedrich-Alexander-University Erlangen-NurembergErlangenGermany
  3. 3.Naval Research LaboratoryWashingtonUSA

Personalised recommendations