Applied Physics A

, Volume 111, Issue 1, pp 15–22 | Cite as

“Live” Prussian blue fading by time-resolved X-ray absorption spectroscopy

  • Claire Gervais
  • Marie-Angélique Languille
  • Solenn Reguer
  • Martine Gillet
  • Edward P. Vicenzi
  • Sébastien Chagnot
  • François Baudelet
  • Loïc Bertrand
Article

Abstract

Prussian blue (PB) is an artists’ pigment that has been frequently used in many artworks but poses several problems of conservation because of its fading under light and anoxia treatment. PB fading is due to the reduction of iron(III) into iron(II) and depends a lot on the object investigated. Due to the complexity of the structure, the precise physico-chemical mechanisms behind the redox process remain obscure. In this paper, we present a procedure to investigate light- and anoxia-induced fading of PB-paper samples by means of time resolved X-ray absorption spectroscopy performed at the Fe K-edge. A system composed of a visible light source and a flux-controlled environmental cell allowed light, gas and humidity to be modified in situ. The synchrotron X-ray beam was evidenced to induce a reduction of PB and to play a major role in the kinetics. The analysis of the PB fading kinetics of a sample submitted to various gas and light environments showed that both synchrotron beam and anoxia were influencing PB reduction in a correlated way. In comparison, light was found to play a minor role. Finally, we have demonstrated that the type of paper substrate could influence significantly the kinetics of reduction. Several hypotheses to explain the correlation between PB reduction mechanism and substrate are presented.

References

  1. 1.
    J. Bartoll, B. Jackisch, Z. Kunsttechnol. Konserv. 21(1), 88 (2010) Google Scholar
  2. 2.
    M. Ware, J. Chem. Educ. 85(5), 612 (2008) CrossRefGoogle Scholar
  3. 3.
    S. Rowe, Stud. Conserv. 49(4), 259 (2004) CrossRefGoogle Scholar
  4. 4.
    H.J. Buser, D. Schwarzenbach, W. Petter, A. Ludi, Inorg. Chem. 16(11), 2704 (1977) CrossRefGoogle Scholar
  5. 5.
    F. Herren, P. Fischer, A. Ludi, W. Halg, Inorg. Chem. 19(4), 956 (1980) CrossRefGoogle Scholar
  6. 6.
    M. Verdaguer, Science 272(5262), 698 (1996) ADSCrossRefGoogle Scholar
  7. 7.
    P.R. Bueno, F.F. Ferreira, D. Gimenez-Romero, G.O. Setti, R.C. Faria, C. Gabrielli, H. Perrot, J.J. Garcia-Jareno, F. Vicente, J. Phys. Chem. C 112(34), 13264 (2008) CrossRefGoogle Scholar
  8. 8.
    C. Gervais, M.A. Languille, S. Reguer, M. Gillet, E.P. Vicenzi, L. Bertrand, Submitted Google Scholar
  9. 9.
    A. Bleuzen, C. Lomenech, V. Escax, F. Villain, F. Varret, C.C.D. Moulin, M. Verdaguer, J. Am. Chem. Soc. 122(28), 6648 (2000) CrossRefGoogle Scholar
  10. 10.
    A. Bleuzen, V. Escax, A. Ferrier, F. Villain, M. Verdaguer, P. Munsch, J.P. Itie, Angew. Chem., Int. Ed. Engl. 43(28), 3728 (2004) CrossRefGoogle Scholar
  11. 11.
    Z.L. Lu, X.Y. Wang, Z.L. Liu, F.H. Liao, S. Gao, R.G. Xiong, H.W. Ma, D.Q. Zhang, D.B. Zhu, Inorg. Chem. 45(3), 999 (2006) CrossRefGoogle Scholar
  12. 12.
    M. Vidotti, S.I.C. de Torresi, J. Braz. Chem. Soc. 19(7), 1248 (2008) CrossRefGoogle Scholar
  13. 13.
    R. Koncki, T. Lenarczuk, A. Radomska, S. Glab, Analyst 126(7), 1080 (2001) ADSCrossRefGoogle Scholar
  14. 14.
    L. Samain, G. Silversmit, J. Sanyova, B. Vekemans, H. Salomon, B. Gilbert, F. Grandjean, G.J. Long, R.P. Hermann, L. Vincze, D. Strivaya, J. Anal. At. Spectrom. 26, 930 (2011) CrossRefGoogle Scholar
  15. 15.
    J.M. del Hoyo-Meléndez, M.F. Mecklenburg, Spectrosc. Lett. 44(2), 113 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    S. Schroeder, N. Tsapatsaris, N. Eastaugh, in 8th European Conference on Research for Protection, Conservation and Enhancement of Cultural Heritage, ed. by J. Kolar, Ljubljana, Slovenia, November 10–12 (2008), pp. 50–51 Google Scholar
  17. 17.
    A. Dostal, G. Kauschka, S.J. Reddy, F. Scholz, J. Electroanal. Chem. 406(1–2), 155 (1996) Google Scholar
  18. 18.
    A. Lerwill, J.H. Townsend, H. Liang, S. Hackney, J. Thomas, Opt. Arts Archit. Archaeol. 6618, 66181G (2007) CrossRefGoogle Scholar
  19. 19.
    F. Baudelet, Q. Kong, L. Nataf, J.D. Cafun, A. Congeduti, A. Monza, S. Chagnot, J.P. Itié, High Press. Res. 31(1), 136 (2011) ADSCrossRefGoogle Scholar
  20. 20.
    M. Newville, J. Synchrotron Radiat. 8, 322 (2001) CrossRefGoogle Scholar
  21. 21.
    K. Hayakawa, K. Hatada, P. D’Angelo, S. Della Longa, C.R. Natoli, M. Benfatto, J. Am. Chem. Soc. 126, 15618 (2004) CrossRefGoogle Scholar
  22. 22.
    B. Cochain, D.R. Neuville, D. De Ligny, J. Roux, F. Baudelet, E. Strukelj, P. Richet, J. Phys. Conf. Ser. 190, 012182 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    J.W. Murray, E.F. Garman, R.B.G. Ravelli, J. Appl. Crystallogr. 37, 513 (2004) CrossRefGoogle Scholar
  24. 24.
    J.M. Holton, J. Synchrotron Radiat. 16, 133–142 (2009) CrossRefGoogle Scholar
  25. 25.
    J.A. Schmidt, C.S. Rye, N. Gurnagul, Polym. Degrad. Stab. 49(2), 291 (1995) CrossRefGoogle Scholar
  26. 26.
    J.H. Townsend, J. Thomas, S. Hackney, A. Lerwill, Stud. Conserv. 1(Suppl.), 76 (2008) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Claire Gervais
    • 1
    • 2
  • Marie-Angélique Languille
    • 3
  • Solenn Reguer
    • 5
  • Martine Gillet
    • 6
  • Edward P. Vicenzi
    • 1
  • Sébastien Chagnot
    • 7
  • François Baudelet
    • 7
  • Loïc Bertrand
    • 3
    • 4
  1. 1.Smithsonian Institution Museum Conservation InstituteSuitlandUSA
  2. 2.Bern University of the ArtsBernSwitzerland
  3. 3.IPANEMA, USR 3461 CNRS/MCCSynchrotron SOLEILGif-sur-YvetteFrance
  4. 4.Synchrotron SOLEILGif-sur-YvetteFrance
  5. 5.DiffAbs beamlineSynchrotron SOLEILGif-sur-YvetteFrance
  6. 6.Centre de Recherche sur la Conservation des CollectionsMuséum national d’histoire naturelleParisFrance
  7. 7.ODE beamlineSynchrotron SOLEILGif-sur-YvetteFrance

Personalised recommendations