Advertisement

Applied Physics A

, Volume 111, Issue 2, pp 395–405 | Cite as

Hard X-ray photoelectron spectroscopy on buried, off-stoichiometric Co x Mn y Ge z (x:z=2:0.38) Heusler thin films

  • Siham Ouardi
  • Gerhard H. Fecher
  • Stanislav Chadov
  • Benjamin Balke
  • Xenia Kozina
  • Claudia Felser
  • Tomoyuki Taira
  • Masafumi Yamamoto
Invited paper

Abstract

Fully epitaxial magnetic tunnel junctions (MTJs) with off-stoichiometric Co2-based Heusler alloy shows an intense dependency of the tunnel magnetoresistance (TMR) on the Mn composition, demonstrating high TMR ratios of above 1000 % at 4.2 K (Yamamoto et al. J. Phys. Condens. Matter 22:164212, 2010). This work reports on the electronic structure of nonstoichiometric Co x Mn y Ge z thin films with a fixed Co/Ge ratio of x:z=2:0.38. The electronic structure was investigated by high-energy, hard X-ray photoelectron spectroscopy combined with first-principles calculations. The high-resolution measurements of the valence band of the nonstoichiometric Co x Mn y Ge z films close to the Fermi energy indicate a shift of the spectral weight compared to bulk Co2MnGe. This is in agreement with the changes in the density of states predicted by the calculations. Furthermore, it is shown that the co-sputtering of Co2MnGe, together with additional Mn, is an appropriate technique to adjust the stoichiometry of the Co x Mn y Ge z film composition. The resulting changes of the electronic structure within the valence band will allow one to tune the magnetoresistive characteristics of Co x Mn y Ge z -based tunnel junctions as verified by the calculations and photoemission experiments.

Keywords

Fermi Energy Electron Spin Polarization Magnetic Tunnel Junction Valence Band Spectrum Heusler Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank E. Ikenaga (BL47XU) and S. Ueda (BL15XU) for help with the experiments. This work was funded by the Deutsche Forschungs Gemeinschaft DFG (TP 1.2-A and 1.3-A of the Research Unit ASPIMATT) and the Japan Science and Technology Agency JST (DFG-JST project: FE633/6-1). The work at Hokkaido University was partly supported by a Grant-in-Aid for Scientific Research (A) (Grant No. 20246054) from the MEXT, Japan, and by the Strategic International Cooperative Program of JST. The synchrotron radiation HAXPES measurements were performed at BL47XU with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Long-term Proposal 2008B0017, 2009A0017) and at BL15XU with the approval of NIMS (Nanonet Support Proposal 2008B4903). The HAXPES experiment at BL15XU was partially supported by the Nanotechnology Network Project MEXT (Japan).

References

  1. 1.
    M. Yamamoto, T. Ishikawa, T. Taira, G.F. Li, K.i. Matsuda, T. Uemura, J. Phys. Condens. Matter 22, 164212 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    T. Ishikawa, S. Hakamata, K.i. Matsuda, T. Uemura, M. Yamamoto, J. Appl. Phys. 103, 07A919 (2008) CrossRefGoogle Scholar
  3. 3.
    N. Tezuka, N. Ikeda, F. Mitsuhashi, S. Sugimoto, Appl. Phys. Lett. 94, 162504 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    T. Ishikawa, H.x. Liu, T. Taira, K.i. Matsuda, T. Uemura, M. Yamamoto, Appl. Phys. Lett. 95, 232512 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    C. Felser, B. Heitkamp, F. Kronast, D. Schmitz, S. Cramm, H.A. Dürr, H.J. Elmers, G.H. Fecher, S. Wurmehl, T. Block, D. Valdaitsev, S.A. Nepijko, A. Gloskovskii, G. Jakob, G. Schönhense, W. Eberhardt, J. Phys. Condens. Matter 15, 7019 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    G.H. Fecher, H.C. Kandpal, S. Wurmehl, J. Morais, H.J. Lin, H.J. Elmers, G. Schönhense, C. Felser, J. Phys. Condens. Matter 17, 7237 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    G.H. Fecher, C. Felser, J. Phys. D, Appl. Phys. 40, 1582 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    T. Block, C. Felser, G. Jakob, J. Ensling, B. Mühling, P. Gütlich, V. Beaumont, F. Studer, R.J. Cava, J. Solid State Chem. 176, 646 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    T. Block, S. Wurmehl, C. Felser, J. Windeln, Appl. Phys. Lett. 88, 202504 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    K. Inomata, N. Tezuka, S. Okamura, H. Kurebayashi, A. Hirohata, J. Appl. Phys. 95, 7234 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    K. Inomata, S. Okamura, A. Miyazaki, M. Kikuchi, N. Tezuka, M. Wojcik, E. Jedryka, J. Phys. D, Appl. Phys. 39, 816 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    K. Inomata, M. Wojcik, E. Jedryka, N. Ikeda, N. Tezuka, Phys. Rev. B 77, 214425 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    H.J. Elmers, S. Wurmehl, G.H. Fecher, G. Jakob, C. Felser, G. Schönhense, Appl. Phys. A 79, 557 (2004) ADSCrossRefGoogle Scholar
  14. 14.
    H.J. Elmers, S. Wurmehl, G.H. Fecher, G. Jakob, C. Felser, G. Schönhense, J. Magn. Magn. Mater. 272–276, 758 (2004) CrossRefGoogle Scholar
  15. 15.
    R.A. de Groot, F.M. Müller, P.G. van Engen, K.H.J. Buschow, Phys. Rev. Lett. 50, 2024 (1983) ADSCrossRefGoogle Scholar
  16. 16.
    J. Kübler, A.R. Williams, C.B. Sommers, Phys. Rev. B 28, 1745 (1983) ADSCrossRefGoogle Scholar
  17. 17.
    M.P. Raphael, B. Ravel, Q. Huang, M.A. Willard, S.F. Cheng, B.N. Das, R.M. Stroud, K.M. Bussmann, J.H. Claessen, V.G. Harris, Phys. Rev. B 66, 104429 (2002) ADSCrossRefGoogle Scholar
  18. 18.
    W.H. Wang, M. Przybylski, W. Kuch, L.I. Chelaru, J. Wang, F. Lu, J. Barthel, H.L. Meyerheim, J. Kirschner, Phys. Rev. B 71, 144416 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    Y. Sakuraba, M. Hattori, M. Oogane, Y. Ando, H. Kato, A. Sakuma, T. Miyazaki, H. Kubota, Appl. Phys. Lett. 88, 192508 (2006) ADSCrossRefGoogle Scholar
  20. 20.
    S. Tsunegi, Y. Sakuraba, M. Oogane, K. Takanashi, Y. Ando, Appl. Phys. Lett. 93, 112506 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    T. Kubota, S. Tsunegi, M. Oogane, S. Mizukami, T. Miyazaki, H. Naganuma, Y. Ando, Appl. Phys. Lett. 94, 122504 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    M. Oogane, T. Kubota, Y. Kota, S. Mizukami, H. Naganuma, A. Sakuma, Y. Ando, Appl. Phys. Lett. 96, 252501 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    F.J. Yang, Y. Sakuraba, S. Kokado, Y. Kota, A. Sakuma, K. Takanashi, Phys. Rev. B 86(2), 020409 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    S. Ouardi, G.H. Fecher, B. Balke, A. Beleanu, X. Kozina, G. Stryganyuk, C. Felser, W. Kloss, H. Schrader, F. Bernardi, J. Morais, E. Ikenaga, Y. Yamashita, S. Ueda, K. Kobayashi, Phys. Rev. B 84, 155122 (2011) ADSCrossRefGoogle Scholar
  25. 25.
    P.J. Webster, J. Phys. Chem. Solids 32, 1221 (1971) ADSCrossRefGoogle Scholar
  26. 26.
    G.H. Fecher, H.C. Kandpal, S. Wurmehl, C. Felser, G. Schönhense, J. Appl. Phys. 99, 08J106 (2006) CrossRefGoogle Scholar
  27. 27.
    P.K. Muduli, W.C. Rice, L. He, F. Tsui, J. Magn. Magn. Mater. 320(23), L141 (2008) CrossRefGoogle Scholar
  28. 28.
    P.K. Muduli, W. Rice, C.L. He, B.A. Collins, Y.S. Chu, F. Tsui, J. Phys. Condens. Matter 21, 296005 (2009) CrossRefGoogle Scholar
  29. 29.
    T. Marukame, T. Ishikawa, K.i. Matsuda, T. Uemura, M. Yamamoto, J. Appl. Phys. 99, 08A904 (2006) CrossRefGoogle Scholar
  30. 30.
    T. Ishikawa, T. Marukame, K.i. Matsuda, T. Uemura, M. Arita, M. Yamamoto, J. Appl. Phys. 99(3), 08J110 (2006) CrossRefGoogle Scholar
  31. 31.
    S. Hakamata, T. Ishikawa, T. Marukame, K.i. Matsuda, T. Uemura, M. Arita, M. Yamamoto, J. Appl. Phys. 101, 09J513 (2007) CrossRefGoogle Scholar
  32. 32.
    T. Taira, T. Ishikawa, N. Itabashi, K.i. Matsuda, T. Uemura, M. Yamamoto, Appl. Phys. Lett. 94, 072510 (2009) ADSCrossRefGoogle Scholar
  33. 33.
    T. Taira, T. Ishikawa, N. Itabashi, K.i. Matsuda, T. Uemura, M. Yamamoto, J. Phys. D, Appl. Phys. 42, 084015 (2009) ADSCrossRefGoogle Scholar
  34. 34.
    G.H. Fecher, B. Balke, A. Gloskowskii, S. Ouardi, C. Felser, T. Ishikawa, M. Yamamoto, Y. Yamashita, H. Yoshikawa, S. Ueda, K. Kobayashi, Appl. Phys. Lett. 92, 193513 (2008) ADSCrossRefGoogle Scholar
  35. 35.
    S. Ouardi, B. Balke, A. Gloskovskii, G.H. Fecher, C. Felser, G. Schönhense, T. Ishikawa, T. Uemura, M. Yamamoto, H. Sukegawa, W. Wang, K. Inomata, Y. Yamashita, H. Yoshikawa, S. Ueda, K. Kobayashi, J. Phys. D, Appl. Phys. 42, 084010 (2009) ADSCrossRefGoogle Scholar
  36. 36.
    S. Ouardi, A. Gloskovskii, B. Balke, C.A. Jenkins, J. Barth, G.H. Fecher, C. Felser, M. Gorgoi, M. Mertin, F. Schäfers, E. Ikenaga, K. Yang, K. Kobayashi, T. Kubota, M. Oogane, Y. Ando, J. Phys. D 42, 084011 (2009) ADSCrossRefGoogle Scholar
  37. 37.
    S. Ouardi, C. Shekhar, G.H. Fecher, X. Kozina, G. Stryganyuk, C. Felser, S. Ueda, K. Kobayashi, Appl. Phys. Lett. 98(21), 211901 (2011) ADSCrossRefGoogle Scholar
  38. 38.
    S. Ouardi, G.H. Fecher, C. Felser, M. Schwall, S.S. Naghavi, A. Gloskovskii, B. Balke, J. Hamrle, K. Postava, J. Pištora, S. Ueda, K. Kobayashi, Phys. Rev. B 86(4), 045116 (2012) ADSCrossRefGoogle Scholar
  39. 39.
    C. Dallera, L. Duo, L. Braicovich, G. Panaccione, G. Paolicelli, B. Cowie, J. Zegenhagen, Appl. Phys. Lett. 85, 4532 (2004) ADSCrossRefGoogle Scholar
  40. 40.
    G. Panaccione, M. Sacchi, P. Torelli, F. Offid, G. Cautero, R. Sergo, A. Fondacaro, C. Henriquet, S. Huotari, G. Monacof, L. Paolasini, J. Electron Spectrosc. Relat. Phenom. 156–158, 64 (2007) CrossRefGoogle Scholar
  41. 41.
    S. Ouardi, G.H. Fecher, X. Kozina, G. Stryganyuk, B. Balke, C. Felser, E. Ikenaga, K. Kobayashi, Phys. Rev. Lett. 107(21), 036402 (2011) ADSCrossRefGoogle Scholar
  42. 42.
    X. Kozina, G.H. Fecher, G. Stryganyuk, S. Ouardi, B. Balke, C. Felser, G. Schönhense, E. Ikenaga, T. Sugiyama, N. Kawamura, M. Suzuki, T. Taira, T. Uemura, M. Yamamoto, H. Sukegawa, W. Wang, K. Inomata, K. Kobayashi, Phys. Rev. B 84(5), 054449 (2011) ADSCrossRefGoogle Scholar
  43. 43.
    T. Ishikawa, T. Marukame, H. Kijima, K.I. Matsuda, T. Uemura, M. Yamamoto, Appl. Phys. Lett. 89, 192505 (2006) ADSCrossRefGoogle Scholar
  44. 44.
    S. Picozzi, A. Continenza, A.J. Freeman, Phys. Rev. B 69, 94423 (2004) ADSCrossRefGoogle Scholar
  45. 45.
    J.W. Cable, Y. Tsunoda, J. Magn. Magn. Mater. 140–144, 93 (1995) CrossRefGoogle Scholar
  46. 46.
    H.L. Luo, P. Duwez, Can. J. Phys. 41, 758 (1963) ADSCrossRefGoogle Scholar
  47. 47.
    H. Ebert, M. Battocletti, Solid State Commun. 98, 785 (1996) ADSCrossRefGoogle Scholar
  48. 48.
    H. Ebert, in Electronic Structure and Physical Properties of Solids. The Use of the LMTO Method, vol. 535, ed. by H. Dreysee (Springer, Berlin, 1999), pp. 191–246 CrossRefGoogle Scholar
  49. 49.
    B. Gyorffy, Phys. Rev. B 5, 2382 (1972) ADSCrossRefGoogle Scholar
  50. 50.
    W.H. Butler, Phys. Rev. B 31, 3260 (1985) ADSCrossRefGoogle Scholar
  51. 51.
    S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980) ADSCrossRefGoogle Scholar
  52. 52.
    R.J. Soulen-Jr, J.M. Byers, M.S. Osofsky, B. Nadgorny, T. Ambrose, S.F. Cheng, P.R. Broussard, C.T. Tanaka, J. Nowak, J.S. Moodera, A. Barry, J.M.D. Coey, Science 282, 85 (1998) ADSCrossRefGoogle Scholar
  53. 53.
    S.S.P. Parkin, C. Kaiser, A. Panchula, P.M. Rice, B. Hughes, M. Samant, S.H. Yang, Nat. Mater. 862, 3 (2004) Google Scholar
  54. 54.
    S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, Nat. Mater. 868, 3 (2004) Google Scholar
  55. 55.
    G.X. Miao, Y.J. Park, J.S. Moodera, M. Seibt, G. Eilers, M. Münzenberg, Phys. Rev. Lett. 100, 246803 (2008) ADSCrossRefGoogle Scholar
  56. 56.
    K. Carva, I. Turek, Acta Phys. Pol. A 113(1), 183 (2008) ADSGoogle Scholar
  57. 57.
    C.S. Fadley, D.A. Shirley, Phys. Rev. A 2, 1109 (1970) ADSCrossRefGoogle Scholar
  58. 58.
    K. Miyamoto, A. Kimura, Y. Miura, M. Shirai, M. Ye, Y. Cui, K. Shimada, H. Namatame, M. Taniguchi, Y. Takeda, Y. Saitoh, E. Ikenaga, S. Ueda, K. Kobayashi, T. Kanomata, Phys. Rev. B 79, 1004205(R) (2009) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Siham Ouardi
    • 1
  • Gerhard H. Fecher
    • 1
  • Stanislav Chadov
    • 1
  • Benjamin Balke
    • 2
  • Xenia Kozina
    • 2
  • Claudia Felser
    • 1
  • Tomoyuki Taira
    • 3
  • Masafumi Yamamoto
    • 3
  1. 1.Max Planck Institute for Chemical Physics of SolidsDresdenGermany
  2. 2.Johannes Gutenberg-UniversitätMainzGermany
  3. 3.Division of Electronics for InformaticsHokkaido UniversitySapporoJapan

Personalised recommendations