Applied Physics A

, Volume 113, Issue 2, pp 483–490 | Cite as

Mechanical properties of g-GaN: a first principles study

  • Qing Peng
  • Chao Liang
  • Wei Ji
  • Suvranu De


We investigate the mechanical properties of proposed graphene-like hexagonal gallium nitride monolayer (g-GaN) using first-principles calculations based on density-functional theory. Compared to the graphene-like hexagonal boron nitride monolayer (g-BN), g-GaN is softer, with 40 % in-plane stiffness, 50 %, 46 %, and 42 % ultimate strengths in armchair, zigzag, and biaxial strains, respectively. However, g-GaN has a larger Poisson’s ratio, 0.43, about 1.9 times that of g-BN. It was found that the g-GaN also sustains much smaller strains before rupture. We obtained the second-, third-, fourth-, and fifth-order elastic constants for a rigorous continuum description of the elastic response of g-GaN. The second-order elastic constants, including in-plane stiffness, are predicted to monotonically increase with pressure while the Poisson’s ratio monotonically decreases with increasing pressure. The sound velocity of a compressional wave has a minima of 10 km/s at an in-plane pressure of 1 N/m, while as a shear wave’s velocity monotonically increases with pressure. The tunable sound velocities have promising applications in nano waveguides and surface acoustic wave sensors.


Elastic Constant Ultimate Strain Biaxial Strain Zigzag Direction Armchair Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge the generous financial support from the Defense Threat Reduction Agency (DTRA) Grant # BRBAA08-C-2-0130 and # HDTRA1-13-1-0025, the US Nuclear Regulatory Commission Faculty Development Program under contract # NRC-38-08-950, and US Department of Energy (DOE) Nuclear Energy University Program (NEUP) Grant # DE-NE0000325.


  1. 1.
    E.F. de Almeida Junior, F. de Brito Mota, C.M.C. de Castilho, A. Kakanakova-Georgieva, G.K. Gueorguiev, Defects in hexagonal-AlN sheets by first-principles calculations. Euro. Phys. J. B 85(1), 48 (2012) ADSCrossRefGoogle Scholar
  2. 2.
    O. Landre, V. Fellmann, P. Jaffrennou, C. Bougerol, H. Renevier, A. Cros, B. Daudin, Molecular beam epitaxy growth and optical properties of AlN nanowires. Appl. Phys. Lett. 96(6), 061912 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    Z.-H. Yuan, S.-Q. Sun, Y.-Q. Duan, D.-J. Wang, Fabrication of densely packed AlN nanowires by a chemical conversion of Al2O3 nanowires based on porous anodic alumina film. Nanoscale Res. Lett. 4(10), 1126–1129 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    T. Xie, Y. Lin, G.S. Wu, X.Y. Yuan, Z. Jiang, C.H. Ye, G.W. Meng, L.D. Zhang, AlN serrated nanoribbons synthesized by chloride assisted vapor-solid route. Inorg. Chem. Commun. 7(4), 545–547 (2004) CrossRefGoogle Scholar
  5. 5.
    Q. Peng, W. Ji, S. De, First-principles study of the effects of mechanical strains on the radiation hardness of hexagonal boron nitride monolayers. Nanoscale 5, 695–703 (2013) ADSCrossRefGoogle Scholar
  6. 6.
    H. Sahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R.T. Senger, S. Ciraci, Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys. Rev. B 80(15), 155453 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    Y. Taniyasu, M. Kasu, T. Makimoto, An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441(7091), 325–328 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    A. Khan, K. Balakrishnan, T. Katona, Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photonics 2(2), 77–84 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    F. Guinea, M.I. Katsnelson, A.K. Geim, Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6(1), 30–33 (2010) CrossRefGoogle Scholar
  10. 10.
    Y. Ma, Y. Dai, W. Wei, C. Niu, L. Yu, B. Huang, First-principles study of the Graphene@MoSe2 heterobilayers. J. Phys. Chem. C 115(41), 20237–20241 (2011) CrossRefGoogle Scholar
  11. 11.
    Z.H. Aitken, R. Huang, Effects of mismatch strain and substrate surface corrugation on morphology of supported monolayer graphene. J. Appl. Phys. 107(12), 123531 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    X. Wei, B. Fragneaud, C.A. Marianetti, J.W. Kysar, Nonlinear elastic behavior of graphene: ab initio calculations to continuum description. Phys. Rev. B 80(20), 205407 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    Q. Peng, W. Ji, S. De, Mechanical properties of the hexagonal boron nitride monolayer: ab initio study. Comput. Mater. Sci. 56, 11 (2012) CrossRefGoogle Scholar
  15. 15.
    Q. Peng, W. Ji, S. De, Mechanical properties of graphyne monolayer: a first-principles study. Phys. Chem. Chem. Phys. 14, 13385–13391 (2012) CrossRefGoogle Scholar
  16. 16.
    C.A. Marianetti, H.G. Yevick, Failure mechanisms of graphene under tension. Phys. Rev. Lett. 105, 245502 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993) ADSCrossRefGoogle Scholar
  18. 18.
    G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994) ADSCrossRefGoogle Scholar
  19. 19.
    G. Kresse, J. Furthuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996) ADSCrossRefGoogle Scholar
  20. 20.
    G. Kresse, J. Furthuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996) CrossRefGoogle Scholar
  21. 21.
    P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136(3B), B864 (1964) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  24. 24.
    P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994) ADSCrossRefGoogle Scholar
  25. 25.
    R.O. Jones, O. Gunnarsson, The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61(3), 689–746 (1989) ADSCrossRefGoogle Scholar
  26. 26.
    Q. Peng, C. Liang, W. Ji, S. De, A theoretical analysis of the effect of the hydrogenation of graphene to graphane on its mechanical properties. Phys. Chem. Chem. Phys. 15, 2003–2011 (2013) CrossRefGoogle Scholar
  27. 27.
    Q. Peng, C. Liang, W. Ji, S. De, A first principles investigation of the mechanical properties of g-tln. Model. Numer. Simul. Mater. Sci. 2, 76–84 (2012) Google Scholar
  28. 28.
    Q. Peng, C. Liang, W. Ji, S. De, A first principles investigation of the mechanical properties of g-ZnO: the graphene-like hexagonal zinc oxide monolayer. Comput. Mater. Sci. 68, 320–324 (2013) CrossRefGoogle Scholar
  29. 29.
    M. Topsakal, S. Cahangirov, S. Ciraci, The response of mechanical and electronic properties of graphane to the elastic strain. Appl. Phys. Lett. 96(9), 091912 (2010) ADSCrossRefGoogle Scholar
  30. 30.
    J.F. Nye, Physical Properties of Crystals (Oxford Science, Oxford, 1995) Google Scholar
  31. 31.
    S.Yu. Davydov, Third order elastic moduli of single layer graphene. Phys. Solid State 53(3), 665 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    Q. Peng, S. De, Tunable band gaps of mono-layer hexagonal BNC heterostructures. Physica E 44, 1662–1666 (2012) ADSCrossRefGoogle Scholar
  33. 33.
    Q. Peng, A.R. Zamiri, W. Ji, S. De, Elastic properties of hybrid graphene/boron nitride monolayer. Acta Mech. 223, 2591–2596 (2012) CrossRefzbMATHGoogle Scholar
  34. 34.
    F. Everest, The Master Handbook of Acoustics (McGraw-Hill, New York, 2001) Google Scholar
  35. 35.
    E.R. Benes, R. Groschl, F. Seifert, A. Pohl, Comparison between BAW and SAW sensor principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(5), 1314–1330 (1998) CrossRefGoogle Scholar
  36. 36.
    R. Weigel, D.P. Morgan, J.M. Owens, A. Ballato, K.M. Lakin, K. Hashimoto, C.C.W. Ruppel, Microwave acoustic materials, devices, and applications. IEEE Trans. Microw. Theory Tech. 50(3), 738–749 (2002) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Mechanical, Aerospace and Nuclear EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations