Applied Physics A

, Volume 113, Issue 1, pp 237–242 | Cite as

Williamson–Hall study on synthesized nanocrystalline tungsten carbide (WC)

Article

Abstract

WC nanoparticles were synthesised by chemical route at 600 °C. The synthesized WC nanoparticles were characterized by X-ray diffraction analysis (XRD) and TEM. The XRD results revealed that the sample product was crystalline with a hexagonal phase. High magnification transmission electron microscopy (TEM) showed that WC sample is spherical in shape with particle size 38.8 nm. X-ray peak broadening analysis was used to evaluate the crystallite sizes and lattice strain by the Williamson–Hall (W–H) analysis. The physical parameters such as strain, stress, and energy density values were calculated precisely for all the reflection peaks of XRD corresponding to hexagonal phase of WC. The three models yield different strain values which may be due to the anisotropic nature of the material. The mean particle size of WC nanoparticles estimated from Scherrer’s formula and W–H analysis is highly intercorrelated with the observed size of TEM.

Notes

Acknowledgements

Authors are grateful to the Department of Science and Technology (DST), New Delhi, India, to provide the financial grant vide letter no. SR/S2/CMP-0010/2009 Dated 29/12/2009 to carry out this research.

References

  1. 1.
    C. Fan, D.V. Louzguine, C. Li, A. Inoue, Appl. Phys. Lett. 75, 340 (1999) CrossRefADSGoogle Scholar
  2. 2.
    N. Nagendra, U. Ramamurty, T.T. Goh, Y. Li, Acta Mater. 48, 2603 (2000) CrossRefGoogle Scholar
  3. 3.
    G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953) CrossRefGoogle Scholar
  4. 4.
    B.E. Warren, B.L. Averbach, J. Appl. Phys. 21, 595 (1950) CrossRefADSGoogle Scholar
  5. 5.
    B.E. Warren, Prog. Met. Phys. 8, 147 (1959) CrossRefGoogle Scholar
  6. 6.
    K. Ramakanth, Basics of X-ray Diffraction and its Application (I.K. International Publishing House Pvt. Ltd., New Delhi, 2007) Google Scholar
  7. 7.
    K. Venkateswarlu, A. Chandra Bose, N. Rameshbabu, Physica B 405, 4256 (2010) CrossRefADSGoogle Scholar
  8. 8.
    A.J.C. Wilson, Proc. Phys. Soc. 80, 286 (1962) CrossRefMATHADSGoogle Scholar
  9. 9.
    A.J.C. Wilson, Proc. Phys. Soc. 81, 41 (1963) CrossRefMATHADSGoogle Scholar
  10. 10.
    V. Biju, N. Sugathan, V. Vrinda, S.L. Salini, J. Mater. Sci. 43, 1175 (2008) CrossRefADSGoogle Scholar
  11. 11.
    V.D. Mote, Y. Purushotham, B.N. Dole, J. Theor. Appl. Phys. 6, 1 (2012) CrossRefGoogle Scholar
  12. 12.
    A. Khorsand Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13, 251 (2011) CrossRefADSGoogle Scholar
  13. 13.
    Y. Rosenberg, V.S. Machavariant, A. Voronel, S. Garber, A. Rubshtein, A.I. Frenkel, E.A. Stern, J. Phys. Condens. Matter 12, 8081 (2000) CrossRefADSGoogle Scholar
  14. 14.
    J. Zang, Y. Zhang, K.W. Xu, V. Ji, Solid State Commun. 139, 87 (2006) CrossRefADSGoogle Scholar
  15. 15.
    D. Balzar, H. Ledbetter, J. Appl. Crystallogr. 26, 97 (1993) CrossRefGoogle Scholar
  16. 16.
    Y.D. Su, C.Q. Hu, C. Wang, M. Wen, W.T. Zheng, J. Vac. Sci. Technol. A 27, 167 (2009) CrossRefGoogle Scholar
  17. 17.
    M. Sherif El-Eskandarany, J. Alloys Compd. 296, 175 (2000) CrossRefGoogle Scholar
  18. 18.
    L. Jiqiao, H. Baiyun, Int. J. Refract. Met. Hard Mater. 19, 89 (2001) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Physics and Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations