Applied Physics A

, Volume 111, Issue 2, pp 487–493 | Cite as

Laser assisted fabrication of ZnO/Ag and ZnO/Au core/shell nanocomposites

  • Reza Zamiri
  • Azmi Zakaria
  • Rahele Jorfi
  • Golnoosh Zamiri
  • Masoumeh Shokati Mojdehi
  • Hossein Abbastabar Ahangar
  • Ali Khorsand Zak


In this paper, we report fabrication and characterization of ZnO/Ag and ZnO/Au core/shell nanocomposites by 2-hour laser irradiation of the two solutions first containing mixture of ZnO and Ag nanoparticles and second containing ZnO and Au nanoparticles. The process of fabrication was carried out by Nd:YAG second harmonic pulsed laser and the prepared samples were characterized by UV–visible absorption spectroscopy, transmission electron microscopy (TEM), and photoluminescence measurement (PL). It was found that the thickness of the shell layer around the core can be controlled by laser irradiation time.



The authors would like to express gratitude and acknowledgement to Ministry of Higher Education Malaysia for funding this project under Research University Grant Scheme (RUGS) of Project No. 05-01-09-0754RU and Universiti Putra Malaysia Postdoctoral Research Fellow program (R.Z.).


  1. 1.
    Y. Yang, J.L. Shi, G. Kawamura, M. Nogami, Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced Raman scattering. Scr. Mater. 58, 862–865 (2008) CrossRefGoogle Scholar
  2. 2.
    G.J. Cho, M.H. Jung, H.T. Yang, B.K. Lee, J.H. Song, Photonic crystals with tunable optical stop band through monodispersed silica–polypyrrole core-shell spheres. Mater. Lett. 61, 1086–1090 (2007) CrossRefGoogle Scholar
  3. 3.
    G. Reshmi, P.M. Kumar, M. Malathi, Preparation, characterization and dielectric studies on carbonyl iron/cellulose acetate hydrogen phthalate core/shell nanoparticles for drug delivery applications. Int. J. Pharm. 365, 131–135 (2009) CrossRefGoogle Scholar
  4. 4.
    B. Sreedhar, P. Radhika, B. Neelima, N. Hebalkar, A.K. Mishra, Selective oxidation of sulfides with H2O2 catalyzed by silica-tungstate core-shell nanoparticles. Catal. Commun. 10, 39–44 (2008) CrossRefGoogle Scholar
  5. 5.
    J.S. Lee, E.V. Shevchenko, D.V. Talapin, Au-PbS core-shell nanocrystals: plasmonic absorption enhancement and electrical doping via intra-particle charge transfer. J. Am. Chem. Soc. 130, 9673–9675 (2008) CrossRefGoogle Scholar
  6. 6.
    J. Li, H.C. Zeng, Size tuning, functionalization, and reactivation of Au in TiO2 nanoreactors. Angew. Chem., Int. Ed. Engl. 44, 4342–4345 (2005) CrossRefGoogle Scholar
  7. 7.
    H. Kim, M.G. Kim, T.J. Shin, H.J. Shin, J. Cho, TiO2@Sn core–shell nanotubes for fast and high density Li-ion storage material. Electrochem. Commun. 10, 1669–1672 (2008) CrossRefGoogle Scholar
  8. 8.
    J.Y. Xiang, J.P. Tu, Y.F. Yan, X.H. Huang, Y. Zhou, L. Zhang, Improved electrochemical performances of core-shell Cu2O/Cu composite prepared by a simple one-step method. Electrochem. Commun. 11, 262–265 (2009) CrossRefGoogle Scholar
  9. 9.
    J.C. Johnson, H. Yan, R.D. Schaller, L.H. Haber, R.J. Saykally, P. Yang, Single nanowire lasers. J. Phys. Chem. B 105, 11387–11390 (2001) CrossRefGoogle Scholar
  10. 10.
    N.J. Kim, S.L. Choi, H.J. Lee, K.J. Kim, Nanostructures and luminescence properties of porous ZnO thin films prepared by sol–gel process. Curr. Appl. Phys. 9, 643–646 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    X.Z. Lin, X.W. Teng, H. Yang, Direct synthesis of narrowly dispersed silver nanoparticles using a single-source precursor. Langmuir 19, 10081–10085 (2003) CrossRefGoogle Scholar
  12. 12.
    Y. Lu, G.L. Liu, L.P. Lee, High-density silver nanoparticle film with temperature controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Lett. 5, 5–9 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    R. Zamiri, B.Z. Azmi, M.G. Naseri, M. Darroudi, H. Abbastabar, F.K. Nazarpour, Laser based fabrication of chitosan mediated silver nanoparticles. Appl. Phys. A 105, 255–259 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    R. Zamiri, A. Zakaria, M. Darroudi, A.R. Sadrolhosseini, M.S. Husin, Z.A. Wahab, M.A. Mahdi, Preparation of starch stabilized silver nanoparticles with spatial self-phase modulation properties by laser ablation technique. Appl. Phys. A 102, 189–194 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    M. Darroudi, M.B. Ahmad, R. Zamiri, A.H. Abdullah, N.A. Ibrahim, M.S. Shahril, Preparation and characterization of gelatin mediated silver nanoparticles by laser ablation. J. Alloys Compd. 509, 1301–1304 (2011) CrossRefGoogle Scholar
  16. 16.
    R. Zamiri, B.Z. Azmi, A.R. Sadrolhosseini, H.A. Ahangar, A.W. Zaidan, M.A. Mahdi, Preparation of silver nanoparticles in virgin coconut oil using laser ablation. Int. J. Nanomed. 6, 71–75 (2011) CrossRefGoogle Scholar
  17. 17.
    R. Zamiri, A. Zakaria, H.A. Ahangar, A.R. Sadrolhosseini, M.A. Mahdi, Fabrication of silver nanoparticles dispersed in palm oil using laser ablation. Int. J. Mol. Sci. 11, 4764–4770 (2010) CrossRefGoogle Scholar
  18. 18.
    S. Link, C. Burda, M.B. Mohamed, B. Nikoobakht, M.A. El-Sayed, Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence. J. Phys. Chem. A 103, 1165–1170 (1999) CrossRefGoogle Scholar
  19. 19.
    S. Link, C. Burda, B. Nikoobakht, M.A. El-Sayed, Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J. Phys. Chem. B 104, 6152–6163 (2000) CrossRefGoogle Scholar
  20. 20.
    Y.H. Chen, C.S.A. Yeh, A new approach for the formation of alloy nanoparticles: laser synthesis of gold–silver alloy from gold–silver colloidal mixtures. Chem. Commun 371–372 (2001) Google Scholar
  21. 21.
    J. Sun, S.L. Simon, The melting behavior of aluminum nanoparticles. Thermochim. Acta 463, 32–40 (2007) CrossRefGoogle Scholar
  22. 22.
    H.H. Farrell, C.D. Van Sicien, Binding energy, vapor pressure, and melting point of semiconductor nanoparticles. J. Vac. Sci. Technol. B 25, 1441–1448 (2007) CrossRefGoogle Scholar
  23. 23.
    Z.L. Wang, C.K. Lin, X.M. Liu, G.Z. Li, Y. Luo, Z.W. Quan, H.P. Xiang, J. Lin, Tunable photoluminescent and cathodoluminescent properties of ZnO and ZnO: Zn phosphors. J. Phys. Chem. B 110, 9469–9476 (2006) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Reza Zamiri
    • 1
    • 4
  • Azmi Zakaria
    • 1
  • Rahele Jorfi
    • 1
  • Golnoosh Zamiri
    • 1
  • Masoumeh Shokati Mojdehi
    • 1
  • Hossein Abbastabar Ahangar
    • 3
  • Ali Khorsand Zak
    • 2
  1. 1.Department of Physics, Faculty of ScienceUniversiti Putra MalaysiaSelangorMalaysia
  2. 2.Low Dimensional Material Research Center, Department of PhysicsUniversity of MalayaKuala LumpurMalaysia
  3. 3.Faculty of ScienceIslamic Azad University, Najafabad BranchIsfahanIran
  4. 4.Department of Materials Engineering and CeramicUniversity of AveiroAveiroPortugal

Personalised recommendations