Advertisement

Applied Physics A

, Volume 112, Issue 4, pp 1063–1071 | Cite as

Effect of microwave radiation on the macromolecular, morphological and crystallographic structures of sisal fiber

  • Annapurna Patra
  • Dillip K. Bisoyi
  • Prem K. Manda
  • A. K. Singh
Article

Abstract

Experiments have been performed to find out the effectiveness of the microwave radiation on the modification of the sisal fiber. The idea of taking the high frequency microwave for modification of the sisal is fueled by the present environmental and energy crisis. Physical properties of the fiber have been modified significantly after microwave irradiation under different conditions in terms of power and time. Macromolecular parameters of the fiber are characterized by the Small angle X-ray Scattering characterization (SAXS) technique. These parameters have been found to be changed significantly after the microwave heat treatment as compare to the raw fiber. The fibers that are irradiated for 4 min under 320 W microwave power (320W4) are found to have least distortion, defect, enhanced density, surface roughness, improved crystallinity, and hydrophobicity. However, the degradation of the structural component and crystallinity of the fiber are observed at higher power and higher treatment period. The chemical structure of the microwave treated fiber does not change much except at higher power and prolong treatment period.

Keywords

Microwave Microwave Irradiation Microwave Treated Void Content Sisal Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to acknowledge the Director, Defence Metallurgical Research laboratory, Hyderabad, India, for the provision of the small angle X-ray scattering facility.

References

  1. 1.
    X. Li, L.G. Tabil, S. Panigrahi, J. Polym. Environ. 15, 25 (2007) CrossRefGoogle Scholar
  2. 2.
    J.C.M. de Bruijn, Appl. Compos. Mater. 7, 415 (2000) ADSCrossRefGoogle Scholar
  3. 3.
    A. Patra, D.K. Bisoyi, J. Mater. Sci. 42, 5742 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    A. Patra, D.K. Bisoyi, J. Mater. Sci. 46, 7206 (2011) ADSCrossRefGoogle Scholar
  5. 5.
    K. Mylsamy, I. Rajendran, Mater. Des. 32, 4629 (2011) CrossRefGoogle Scholar
  6. 6.
    F. Corrales, F. Vilaseca, M. Llop, J. Girones, J.A. Mendez, P. Mutje, J. Hazard. Mater. 144, 730 (2007) CrossRefGoogle Scholar
  7. 7.
    H.M. Mominul, M. Hasan, M.S. Islam, A.M. Ershad, Bioresour. Technol. 100, 4903 (2009) CrossRefGoogle Scholar
  8. 8.
    D.E. Clark, W.H. Sutton, Annu. Rev. Mater. Sci. 26, 299 (1996) ADSCrossRefGoogle Scholar
  9. 9.
    J. Katz, Annu. Rev. Mater. Sci. 22, 153 (1992) ADSCrossRefGoogle Scholar
  10. 10.
    National Materials Advisory Board, Microwave Processing of Materials (National Academy Press, Washington, 1994) Google Scholar
  11. 11.
    R. Murugan, M. Senthilkumar, T. Ramachandran, IIE Part TX, Text. Eng. Div. 87, 23 (2007) Google Scholar
  12. 12.
    J.P. Li, H.F. Lin, W.F. Zhao, G.H. Chen, J. Appl. Polym. Sci. 109, 1377 (2008) CrossRefGoogle Scholar
  13. 13.
    J. Guo, X. Wang, P. Miao, X. Liao, W. Zhanga, B. Shi, J. Mater. Chem. 22, 11933 (2012) CrossRefGoogle Scholar
  14. 14.
    Z. Xue, H.J. Xin, J. Appl. Polym. Sci. 119, 944 (2011) CrossRefGoogle Scholar
  15. 15.
    N.M. Mahmoodi, F. Moghimi, M. Arami, F. Mazaheri, Fiber Polym. 11, 234 (2010) CrossRefGoogle Scholar
  16. 16.
    I. Singh, K.P. Bajpai, D. Malik, A.K. Sharma, P. Kumar, Akademeia 1, 1 (2011) Google Scholar
  17. 17.
    M.A. Moharram, O.M. Mahmoud, J. Appl. Polym. Sci. 105, 2978 (2007) CrossRefGoogle Scholar
  18. 18.
    J. Guo, H. Wu, X. Liao, B. Shi, J. Phys. Chem. C 115, 23688 (2011) CrossRefGoogle Scholar
  19. 19.
    J. Guo, X. Wang, X. Liao, W. Zhanga, B. Shi, J. Phys. Chem. C 116, 8188 (2012) CrossRefGoogle Scholar
  20. 20.
    N.M.D. Khan, Small angle X-ray scattering study of sisal fiber using correlation function, pp. 71–72. Ph.D. Thesis, NIT Rourkela, 1991 Google Scholar
  21. 21.
    W. Ruland, J. Appl. Crystallogr. 4, 70 (1971) CrossRefGoogle Scholar
  22. 22.
    C.G. Vonk, J. Appl. Crystallogr. 8, 340 (1975) CrossRefGoogle Scholar
  23. 23.
    T. Mishra, D.K. Bisoyi, T. Patel, K.C. Patra, A. Patel, Polym. J. 20, 739 (1988) CrossRefGoogle Scholar
  24. 24.
    O. Kartky, G. Miholic, J. Polym. Sci. C 2, 449 (1963) CrossRefGoogle Scholar
  25. 25.
    C.G. Vonk, J. Appl. Crystallogr. 4, 340 (1971) CrossRefGoogle Scholar
  26. 26.
    P. Mittelbach, G. Porod, Colloid. Polym. Sci. 202, 40 (1965) Google Scholar
  27. 27.
    L. Segal, J. Creely, J.A.E. Martin, C.M. Conrad, Tex. Res. J. 29, 786 (1959) CrossRefGoogle Scholar
  28. 28.
    K. Muhlethaler, Papier 17, 546 (1963) Google Scholar
  29. 29.
    D. Katovic, in Woven Fabric Engineering, ed. by P.D. Dubrovski (Sciyo, Rijeka 2010), p. 297 Google Scholar
  30. 30.
    V. Vilay, M. Mariatti, R.M. Taib, M. Todo, Compos. Sci. Technol. 68, 631 (2008) CrossRefGoogle Scholar
  31. 31.
    N. Prasad, J. Patnaik, N. Bohidar, T. Mishra, J. Appl. Polym. Sci. 67, 1753 (1998) CrossRefGoogle Scholar
  32. 32.
    M. Tsukada, S. Islam, T. Arai, A. Boschi, G. Freddi, AUTEX Res. J. 5, 40 (2005) Google Scholar
  33. 33.
    V.A. Alvarez, A. Vázquez, Composites, Part A, Appl. Sci. Manuf. 37, 1672 (2006) CrossRefGoogle Scholar
  34. 34.
    A. Paul, K. Joseph, S. Thomas, Compos. Sci. Technol. 51, 67 (1997) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Annapurna Patra
    • 1
  • Dillip K. Bisoyi
    • 1
  • Prem K. Manda
    • 2
  • A. K. Singh
    • 2
  1. 1.Department of PhysicsNIT RourkelaRourkelaIndia
  2. 2.Material Science DivisionDMRL HyderabadHyderabadIndia

Personalised recommendations