Applied Physics A

, Volume 110, Issue 1, pp 9–15 | Cite as

Ultrashort high repetition rate exposure of dielectric materials: laser bonding of glasses analyzed by micro-Raman spectroscopy

  • S. RichterEmail author
  • F. Zimmermann
  • S. Döring
  • A. Tünnermann
  • S. Nolte
Invited paper


We report on the joining of different glass types with dissimilar optical, thermal and mechanical properties by ultrashort laser welding at high repetition rates. Femtosecond laser pulses were focused at the interface of two optically contacted transparent samples. Using nonlinear absorption processes and heat accumulation of successive pulses, we achieved strong bonds between the samples. We used a three-point bending test to determine the breaking strength. With this technique, we achieved for instance for a borosilicate glass a breaking strength of up to 95 % of the bulk material. In addition, we even welded different material combinations. Although the welded glasses exhibit different thermal and mechanical properties, we obtained breaking strengths which are comparable to the utilized bulk materials. Using Raman spectroscopy we mapped the laser-processed material along the welded interface. Thereby, we determined that the welds consist of a mixture of both species, which is formed during the laser induced melting of the materials.


Welding Fuse Silica Breaking Strength Laser Welding Welding Seam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge Prof. Dr. K. Richardson from the CREOL, University of Central Florida for fruitful discussions. We thank Krystyna Drozdowicz-Tomsia from the Macquarie Photonics Research Centre of the Macquarie University Sydney for the introduction to Raman analysis. We also acknowledge G. Kalkowski and G. Leibeling from the Fraunhofer Institute for Applied Optics and Precision Engineering for their support in sample preparation and analysis. Sören Richter acknowledges the Hans L. Merkle Stiftung for support. This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG, Leibniz program).


  1. 1.
    S.T. Gulati, M.J. Edwards, Crit. Rev. Opt. Sci. Technol. 67, 107 (1997) Google Scholar
  2. 2.
    K. Itoh, W. Watanabe, S. Nolte, C.B. Schaffer, Mater. Res. Soc. Bull. 31, 620 (2006) CrossRefGoogle Scholar
  3. 3.
    S. Nolte, M. Will, J. Burghoff, A. Tünnermann, J. Mod. Opt. 51, 2533 (2004) CrossRefADSGoogle Scholar
  4. 4.
    J. Haisma, G.A.C.M. Spierings, Mater. Sci. Eng. R 37, 1 (2002) CrossRefGoogle Scholar
  5. 5.
    M. Shimbo, K. Furukawa, K. Fukuda, K. Tanzawa, J. Appl. Phys. 60, 2987 (1986) CrossRefADSGoogle Scholar
  6. 6.
    G. Kalkowski, M. Rohde, S. Risse, R. Eberhardt, A. Tünnermann, ECS Trans. 33, 349 (2010) CrossRefGoogle Scholar
  7. 7.
    H.Y. Wang, R.S. Foote, S.C. Jacobson, J.H. Schneibel, J.M. Ramsey, Sens. Actuators B, Chem. 45, 199 (1997) CrossRefGoogle Scholar
  8. 8.
    C. Luo, L. Lin, Sens. Actuators A, Phys. 97, 398 (2002) CrossRefGoogle Scholar
  9. 9.
    C.B. Schaffer, A. Brodeuer, E. Mazur, Meas. Sci. Technol. 12, 1784 (2001) CrossRefADSGoogle Scholar
  10. 10.
    S.M. Eaton, H. Zhang, M.L. Ng, J. Li, W. Chen, S. Ho, P.R. Herman, Opt. Express 16, 9443 (2008) CrossRefADSGoogle Scholar
  11. 11.
    I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, F. Yoshino, J. Laser Micro Nanoeng. 2, 57 (2007) CrossRefGoogle Scholar
  12. 12.
    T. Tamaki, W. Watanabe, J. Nishii, K. Itoh, Jpn. J. Appl. Phys. 44, 687 (2005) CrossRefADSGoogle Scholar
  13. 13.
    W. Watanabe, S. Onda, T. Tamaki, K. Itoh, Appl. Phys. Lett. 89, 021106 (2006) CrossRefADSGoogle Scholar
  14. 14.
    S. Richter, S. Döring, A. Tünnermann, S. Nolte, Appl. Phys. A, Mater. Sci. Process. 103, 257 (2011) CrossRefADSGoogle Scholar
  15. 15.
    D. Hélie, M. Bégin, F. Lacroix, R. Vallée, Appl. Opt. 51, 2098 (2012) CrossRefADSGoogle Scholar
  16. 16.
    Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, K. Itoh, Appl. Phys. Express 1, 082601 (2008) CrossRefADSGoogle Scholar
  17. 17.
    R. Demmig, Repetitorium Technische Mechanik, Festigkeitslehre, vol. 2 (Demmig, Darmstadt, 1991) Google Scholar
  18. 18., 20 August 2012
  19. 19.
    J. Haisma, N. Hattu, J.T.C.M. Pulles, E. Steding, J.C.G. Vervest, Appl. Opt. 46, 6793 (2007) CrossRefADSGoogle Scholar
  20. 20.
    T. Yoshino, Y. Ozeki, M. Matsumoto, K. Itoh, Jpn. J. Appl. Phys. 51, 102403 (2012) CrossRefADSGoogle Scholar
  21. 21.
    H. Zheng, C.L. Gnian, Opt. Lasers Eng. 41, 791 (2004) CrossRefGoogle Scholar
  22. 22.
    D.J. Little, M. Ams, S. Gross, P. Dekker, C.T. Miese, A. Fuerbach, M.J. Withford, J. Raman Spectrosc. 42, 715 (2011) CrossRefADSGoogle Scholar
  23. 23.
    P. Colomban, A. Tournie, L. Bellot-Gurlot, J. Raman Spectrosc. 37, 841 (2006) CrossRefADSGoogle Scholar
  24. 24.
    M.F. Best, R.A. Condrate, J. Mater. Sci. Lett. 4, 994 (1985) CrossRefGoogle Scholar
  25. 25.
    W. Hutton, J.S. Thorp, J. Mater. Sci. 20, 542 (1985) CrossRefADSGoogle Scholar
  26. 26.
    B. Mysen, D. Neuville, Geochim. Cosmochim. Acta 59, 325 (1995) CrossRefADSGoogle Scholar
  27. 27.
    D.Y. Smith, C.E. Black, C.C. Homes, E. Shiles, Phys. Status Solidi C 4, 838 (2007) CrossRefADSGoogle Scholar
  28. 28.
    O.S. Dymshits, A.A. Zhilin, V.I. Petrov, M.Ya. Tsenter, T.I. Chuvaeva, A.V. Sahshki, V.V. Golubkov, U. Kang, K.-H. Lee, Glass Phys. Chem. 28, 66 (2002) CrossRefGoogle Scholar
  29. 29.
    L.I. Berezhinsky, V.P. Maslov, B.K. Serdega, V.V. Tetyorkin, V.A. Yukhymchuk, J. Eur. Ceram. Soc. 26, 3825 (2006) CrossRefGoogle Scholar
  30. 30.
    T.I. Chuvaeva, O.S. Dymshits, V.I. Petrov, M.Ya. Tsenter, A.A. Zhilin, V.V. Golubkov, J. Non-Cryst. Solids 243, 244 (1999) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • S. Richter
    • 1
    Email author
  • F. Zimmermann
    • 1
  • S. Döring
    • 1
  • A. Tünnermann
    • 1
    • 2
  • S. Nolte
    • 1
    • 2
  1. 1.Institute of Applied Physics, Abbe Center of PhotonicsFriedrich-Schiller-UniversitätJenaGermany
  2. 2.Fraunhofer Institute for Applied Optics and Precision EngineeringJenaGermany

Personalised recommendations