Applied Physics A

, Volume 110, Issue 1, pp 145–152

Fabrication of Rh based solid-solution bimetallic alloy nanoparticles with fully-tunable composition through femtosecond laser irradiation in aqueous solution

  • M. Samiul Islam Sarker
  • Takahiro Nakamura
  • Yuliati Herbani
  • Shunichi Sato
Article

Abstract

Many late transition binary alloy nanoparticles (NPs) have been fabricated through a wide variety of techniques. Various steps are involved in the fabrication of such NPs. Here, we used a simple and green route to fabricate solid-solution Rh–Pd and Rh–Pt bimetallic alloy NPs through femtosecond laser irradiation in a solution without any chemicals like reducing agents. X-ray diffraction (XRD) peaks of NPs obtained in the solutions with different ratios of Rh–Pd and Rh–Pt ions monotonically varied from the position of pure Rh to those of Pd and to Pt which respectively indicated that these NPs were alloy. Composition of fabricated NPs was fully tuned over the entire range of Rh1−x–Pdx, and Rh1−x–Ptx with varying the mixing ratio of metal ions in the solution. Studies of Rh–Pd and Rh–Pt solid-solution system suggest that the alloy formation occurs through the nucleation of Rh and then followed by the diffusion of Rh, Pd and Rh, Pt to form a homogeneous alloy. The variety of average size of the alloy NPs for different compositions could be attributed to different reduction rate and surface energies of metal ions. Our result implies that femtosecond laser irradiation in aqueous solution is one of the potential methodologies to form multimetallic solid-solution alloy NPs with fully tunable composition.

References

  1. 1.
    E. Roduner, Chem. Soc. Rev. 35, 583 (2006) CrossRefGoogle Scholar
  2. 2.
    S. Link, M.A. El-Sayed, Annu. Rev. Phys. Chem. 54, 331 (2003) CrossRefADSGoogle Scholar
  3. 3.
    M.A. Newton, B. Jyoti, A.J. Dent, S. Diaz-Moreno, S.G. Fiddy, J. Evans, Chem. Phys. Chem. 5, 1056 (2004) CrossRefGoogle Scholar
  4. 4.
    A. Harriman, J. Chem. Soc. Chem. Commun. (1990) Google Scholar
  5. 5.
    T. Yonezawa, N. Toshima, J. Mol. Catal. 83, 167 (1993) CrossRefGoogle Scholar
  6. 6.
    N. Toshima, K. Hirakawa, Polym. J. 31, 1127 (1999) CrossRefGoogle Scholar
  7. 7.
    A.F. Lee, C.J. Baddeley, C. Hardacre, R.M. Ormerod, R.M. Lambert, G. Schmid, H. West, J. Phys. Chem. 99, 6096 (1995) CrossRefGoogle Scholar
  8. 8.
    K. Hirakawa, N. Toshima, Chem. Lett. 32, 78 (2003) CrossRefGoogle Scholar
  9. 9.
    J.R. Renzas, Phys. Chem. Phys. 13, 2556 (2011) CrossRefGoogle Scholar
  10. 10.
    K. Siepen, H. Bönnemann, W. Brijoux, J. Rothe, J. Hormes, Appl. Organomet. Chem. 14, 549 (2000) CrossRefGoogle Scholar
  11. 11.
    C.E. Lyman, R.E. Lakis, H.G. Stenger, Ultramicroscopy 58, 25 (1995) CrossRefGoogle Scholar
  12. 12.
    J.Y. Park, Y. Zhang, M. Grass, T. Zhang, G.A. Somoraji, Nano Lett. 8, 673 (2008) CrossRefADSGoogle Scholar
  13. 13.
    N. Savastenko, H.R. Volpp, O. Gerlach, W. Strehlau, J. Nanopart. Res. 10, 277 (2008) CrossRefGoogle Scholar
  14. 14.
    Y. Wang, J. Zhang, X. Wang, J. Ren, B. Zuo, Y. Tang, Top. Catal. 35, 35 (2005) CrossRefGoogle Scholar
  15. 15.
    M. Harada, K. Asakura, N. Toshima, J. Phys. Chem. 98, 2653 (1994) CrossRefGoogle Scholar
  16. 16.
    T. Hashimoto, K. Saijo, M. Harada, N. Toshima, J. Chem. Phys. 109, 5627 (1998) CrossRefADSGoogle Scholar
  17. 17.
    M. Harada, H. Einaga, J. Colloid Interface Sci. 308, 568 (2007) CrossRefGoogle Scholar
  18. 18.
    E. Cimini, R. Prins, J. Phys. Chem. B 101, 5277 (1997) CrossRefGoogle Scholar
  19. 19.
    E.R. Essinger–Hileman, D. DeCicco, J.F. Bondi, R.E. Schaak, J. Mater. Chem. 21, 11599 (2011) CrossRefGoogle Scholar
  20. 20.
    Y. Herbani, T. Nakamura, S. Sato, J. Nanomater. 2010, 154210 (2010) CrossRefGoogle Scholar
  21. 21.
    J.L.H. Chau, C.Y. Chen, M.C. Yang, K.L. lin, S. Sato, T. Nakamura, C.C. Yang, C.W. Cheng, Mater. Lett. 65, 804 (2011) CrossRefGoogle Scholar
  22. 22.
    T. Nakamura, Y. Herbani, S. Sato, J. Nanopart. Res. 14, 785 (2012) CrossRefGoogle Scholar
  23. 23.
    R.J. Bonilla, B.R. James, P.G. Jessop, Chem. Commun. 941 (2000) Google Scholar
  24. 24.
    S. Pommeret, F. Gobert, M. Mostafavi, I. Lampre, J.C. Mialocq, J. Phys. Chem. A 105, 11400 (2001) CrossRefGoogle Scholar
  25. 25.
    S.L. Chin, S. Legacé, Appl. Opt. 35, 907 (1996) CrossRefADSGoogle Scholar
  26. 26.
    J.-P. Sylvestre, S. Poulin, A.V. Kabashin, E. Sacher, M. Meunier, J.H.T. Luong, J. Phys. Chem. B 108, 16864 (2004) CrossRefGoogle Scholar
  27. 27.
    A.J. Dent, J. Evans, S.G. Fiddy, B. Jyoti, M.A. Newton, M. Tromp, Faraday Discuss. 138, 287 (2008) CrossRefADSGoogle Scholar
  28. 28.
    A. Cao, G. Veser, Nat. Mater. 9, 75 (2010) CrossRefADSGoogle Scholar
  29. 29.
    J.Y. Park, Y. Zhang, S.H. Joo, Y. Jung, G.A. Somoraji, Catal. Today 181, 133 (2012) CrossRefGoogle Scholar
  30. 30.
    K. Yuge, Mater. Trans. 52, 1399 (2011) CrossRefGoogle Scholar
  31. 31.
    K. Yuge, Phys. Rev. B 84, 085451 (2011) CrossRefADSGoogle Scholar
  32. 32.
    H.H. Huang, X.P. Ni, G.L. Loy, C.H. Chew, K.L. Tan, F.C. Loh, J.F. Deng, G.Q. XU, Langmuir 12, 909 (1996) CrossRefGoogle Scholar
  33. 33.
    A. Henglein, Chem. Mater. 10, 444 (1998) CrossRefGoogle Scholar
  34. 34.
    T. Kempa, R.A. Farrer, M. Giersig, J.T. Fourkas, Plasmonics 1, 45 (2006) CrossRefGoogle Scholar
  35. 35.
    D. Wynblatt, R.C. Ku, Appl. Surf. Sci. 65, 511 (1987) Google Scholar
  36. 36.
    W.M.H. Sachtler, R.A. van Santen, Appl. Surf. Sci. 3, 121 (1979) CrossRefGoogle Scholar
  37. 37.
    N. Toshima, T. Yonezawa, M. Harada, K. Asakura, Y. Iwasawa, Chem. Lett. 1769 (1989) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. Samiul Islam Sarker
    • 1
    • 2
  • Takahiro Nakamura
    • 1
  • Yuliati Herbani
    • 1
  • Shunichi Sato
    • 1
  1. 1.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan
  2. 2.Department of PhysicsUniversity of RajshahiRajshahiBangladesh

Personalised recommendations