Advertisement

Applied Physics A

, Volume 112, Issue 4, pp 919–926 | Cite as

Accelerated in vitro durability testing of nonvascular Nitinol stents based on the electrical potential sensing method

  • Chan-Hee Park
  • Leonard D. TijingEmail author
  • Hem Raj Pant
  • Tae-Hyung Kim
  • Altangerel Amarjargal
  • Han Joo Kim
  • Cheol Sang KimEmail author
Article

Abstract

In this paper, we report an evaluation of the performance of a new stent durability tester based on the electrical potential sensing method through accelerated in vitro testing of six different nonvascular Nitinol stents simulating physiological conditions. The stents were subjected to a pulsatile loading of 33 Hz for a total of 62,726,400 cycles, at constant temperature and pressure of 35±0.5 °C and 120±4 mmHg, respectively. The electrical potential of each stent was measured in real-time and monitored for any changes in readings. After conducting test-to-fracture tests, the stents were visually checked, and by scanning electron microscopy. A sudden electrical potential drop in the readings suggests a fracture has occurred, and the only two instances of fracture in our present results were correctly determined by our present device, with the fractures confirmed visually after the test. The excellent performance of our new method shows good potential for a highly reliable and applicable in vitro durability testing for different kinds and sizes of metallic stents.

Keywords

Simulated Body Fluid Durability Testing Stent Fracture Voice Coil Motor Nitinol Stents 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research was supported by a grant from the Ministry of Education, Science, and Technology through the Leaders in Industry-University Cooperation (LinC) Project (Project no. 2012-C-0043-010111) and also by a grant from the Business for Greening the Manufacturing Environment Technology Development Project funded by the Korean Small and Medium Business Administration (Project no. S2025435).

References

  1. 1.
    B.A. James, R.A. Sire, Fatigue-life assessment and validation techniques for metallic vascular implants. Biomaterials 31(2), 181–186 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    X. Zhou, Z. You, J. Byrne, Bio-inspired leaf stent for direct treatment of cerebral aneurysms: design and finite element analysis. Smart Struct. Syst. 8(1), 1–15 (2011) zbMATHCrossRefGoogle Scholar
  3. 3.
    D.K. Lee, Drug-eluting stent in malignant biliary obstruction. J. Hepatobiliary Pancreat. Surg. 16(5), 628–632 (2009) CrossRefGoogle Scholar
  4. 4.
    C. Dumoulin, B. Cochelin, Mechanical behaviour modelling of balloon-expandable stents. J. Biomech. 33(11), 1461–1470 (2000) CrossRefGoogle Scholar
  5. 5.
    J.J. Li, Q.Y. Luo, Z.Y. Xie, Y. Li, Y.J. Zeng, Fatigue life analysis and experimental verification of coronary stent. Heart Vessels 25(4), 333–337 (2010) CrossRefGoogle Scholar
  6. 6.
    C. Capelli, F. Gervaso, L. Petrini, G. Dubini, F. Migliavacca, Assessment of tissue prolapse after balloon-expandable stenting: influence of stent cell geometry. Med. Eng. Phys. 31(4), 441–447 (2009) CrossRefGoogle Scholar
  7. 7.
    N. Muhammad, L. Li, Underwater femtosecond laser micromachining of thin nitinol tubes for medical coronary stent manufacture. Appl. Phys. A, Mater. Sci. Process. 107(4), 849–861 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    S.W. Robertson, R.O. Ritchie, A fracture-mechanics-based approach to fracture control in biomedical devices manufactured from superelastic nitinol tube. J. Biomed. Mater. Res., Part B, Appl. Biomater. 84B(1), 26–33 (2008) CrossRefGoogle Scholar
  9. 9.
    S.W. Robertson, R.O. Ritchie, In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic nitinol tube for endovascular stents: a basis for defining the effect of crack-like defects. Biomaterials 28(4), 700–709 (2007) CrossRefGoogle Scholar
  10. 10.
    US Food and Drug Administration, Non-clinical tests and recommended labeling for intravascular stents and associated delivery systems: guidance for industry and FDA staff. US Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological Health January 13, 2005 Google Scholar
  11. 11.
    G. Riepe, C. Heintz, E. Kaiser, N. Chakfe, M. Morlock, M. Delling, H. Imig, What can we learn from explanted endovascular devices? Eur. J. Vasc. Endovasc. Surg. 24(2), 117–122 (2002) CrossRefGoogle Scholar
  12. 12.
    T.S. Jacobs, J. Won, E.C. Gravereaux, P.L. Faries, N. Morrissey, V.J. Teodorescu, L.H. Hollier, M.L. Marin, Mechanical failure of prosthetic human implants: a 10-year experience with aortic stent graft devices. J. Vasc. Surg. 37(1), 16–26 (2003) CrossRefGoogle Scholar
  13. 13.
    S.N.D. Chua, B.J. Mac Donald, M.S.J. Hashmi, Finite element simulation of stent and balloon interaction. J. Mater. Process. Technol. 143, 591–597 (2003) CrossRefGoogle Scholar
  14. 14.
    C.H. Park, L.D. Tijing, Y. Yun, C.S. Kim, A novel electrical potential sensing method for in vitro stent fracture monitoring and detection. Bio-Med. Mater. Eng. 21(4), 213–222 (2011) Google Scholar
  15. 15.
    F.G. Kline, F.A. McClintock, Describing uncertainties in single sample experiments. Mech. Eng. 75, 3–8 (1953) Google Scholar
  16. 16.
    A.R. Pelton, V. Schroeder, M.R. Mitchell, X.Y. Gong, M. Barney, S.W. Robertson, Fatigue and durability of nitinol stents. J. Mech. Behav. Biomed. Mater. 1(2), 153–164 (2008) CrossRefGoogle Scholar
  17. 17.
    M. Gottsauner-Wolf, D.J. Moliterno, A.M. Lincoff, E.J. Topol, Restenosis—an open file. Cardiol. Clin. 19, 347–356 (1997) Google Scholar
  18. 18.
    M.C. Morice, P.W. Serruys, J.E. Sousa, J. Fajadet, E.B. Hayashi, M. Perin, A. Colombo, G. Schuler, P. Barragan, G. Guagliumi, F. Molnar, R. Falotico, A ramdomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N. Engl. J. Med. 346, 1773–1780 (2000) CrossRefGoogle Scholar
  19. 19.
    R. Guidoin, Y. Marois, Y. Douville, M.W. King, M. Castonguay, A. Traore, M. Formichi, L.E. Staxrud, L. Norgren, P. Bergeron, J.P. Becquemin, J.M. Egana, P.L. Harris, First-generation aortic endografts: analysis of explanted stenter devices from the EUROSTAR registry. J. Endovasc. Ther. 7(2), 105–122 (2000) CrossRefGoogle Scholar
  20. 20.
    H.J. Salacinski, S. Goldner, A. Giudiceandrea, G. Hamilton, A.M. Seifalian, A. Edwards, R.J. Carson, The mechanical behavior of vascular grafts: a review. J. Biomater. Appl. 15(3), 241–278 (2001) CrossRefGoogle Scholar
  21. 21.
    R. Uflacker, J. Robison, Endovascular treatment of abdominal aortic aneurysms: a review. Eur. Radiol. 11(5), 739–753 (2001) CrossRefGoogle Scholar
  22. 22.
    X.Y. Gong, D.J. Chwirut, M.R. Mitchell, B.D. Choules, Fatigue to fracture: an informative, fast, and reliable approach for assessing medical implant durability. J. ASTM Int. 6(7), 1–10 (2009) CrossRefGoogle Scholar
  23. 23.
    R. Guidoin, Y. Douville, M.W. King, M. Castonguay, A. Traore, M. Formichi, L.E. Staxrud, L. Norgren, P. Bergeron, J.P. Becquemin, J.M. Egana, P.L. Harris, First-generation aortic endografts: analysis of explanted stentor devices from the EUROSTAR registry. J. Endovasc. Ther. 7(2), 105–122 (2000) CrossRefGoogle Scholar
  24. 24.
    S. Schievano, A.M. Taylor, C. Capelli, P. Lurz, J. Nordmeyer, F. Migliavacca, P. Bonhoeffer, Patient specific finite element analysis results in more accurate prediction of stent fractures: application to percutaneous pulmonary valve implantation. J. Biomech. 43(4), 687–693 (2010) CrossRefGoogle Scholar
  25. 25.
    R.V. Marrey, R. Burgermeister, R.B. Grishaber, R.O. Ritchie, Fatigue and life prediction for cobalt-chromium stents: a fracture mechanics analysis. Biomaterials 27(9), 1988–2000 (2006) CrossRefGoogle Scholar
  26. 26.
    E. Black, R. Burgermeister, R.D.B. Grishaber, D.W. Overaker, Systems and methods for fatigue testing systems. U.S. Patent 7,363,821 B2, 2008 Google Scholar
  27. 27.
    H. Zhao, L. Wang, Y. Li, X. Liu, A new device to study fatigue performance and mathematical model to analyze relationship between textile parameters and fatigue of textile scaffold for stent-graft, in Proc. of the 3rd International Conference on Bioinformatics and Biomedical Engineering: ICBBE, Beijing, China (2009), pp. 1–6 Google Scholar
  28. 28.
    A. Nikanorov, H.B. Smouse, K. Osman, M. Bialas, S. Shrivastava, L.B. Schwartz, Fracture of self-expanding nitinol stents stressed in vitro under simulated intravascular conditions. J. Vasc. Surg. 48(2), 435–440 (2008) CrossRefGoogle Scholar
  29. 29.
    K.S. Vilendrer, Direct strain measurement method using an endoscope, EnduraTECH Systems Corporation. Retrieved October 25, 2010 from http://www.bose-electroforce.com/papers/ID-OD.pdf
  30. 30.
    S. Muller-Hulsbeck, P.J. Schafer, N. Charalambous, H. Yagi, M. Heller, T. Jahnke, Comparison of second-generation stents for application in the superficial femoral artery: an in vitro evaluation focusing on stent design. J. Endovasc. Ther. 17(6), 767–776 (2010) CrossRefGoogle Scholar
  31. 31.
    R.S. Perret, G.D. Sloop, J.A. Borne, Common bile duct measurements in an elderly population. J. Ultrasound Med. 19(11), 727–730 (2000) Google Scholar
  32. 32.
    European Standard EN12006-3: 1998, Non active surgical implants—particular requirements for cardiac and vascular implants—part 3: endovascular devices Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Chan-Hee Park
    • 1
  • Leonard D. Tijing
    • 2
    • 3
    Email author
  • Hem Raj Pant
    • 1
    • 4
  • Tae-Hyung Kim
    • 2
  • Altangerel Amarjargal
    • 1
    • 5
  • Han Joo Kim
    • 2
  • Cheol Sang Kim
    • 1
    • 2
    Email author
  1. 1.Department of Bionanosystem Engineering, Graduate SchoolChonbuk National UniversityJeonjuKorea
  2. 2.Division of Mechanical Design EngineeringChonbuk National UniversityJeonjuKorea
  3. 3.Department of Mechanical Engineering, College of Engineering and DesignSilliman UniversityDumaguete CityPhilippines
  4. 4.Department of Engineering Science and Humanities, Institute of EngineeringTribhuvan UniversityKathmanduNepal
  5. 5.Power Engineering SchoolMongolian University of Science and TechnologyUlaanbaatarMongolia

Personalised recommendations