Applied Physics A

, Volume 112, Issue 2, pp 431–436 | Cite as

A new method to invert top-gate organic field-effect transistors for Kelvin probe investigations

  • L. A. Kehrer
  • E. J. Feldmeier
  • C. Siol
  • D. Walker
  • C. Melzer
  • H. von Seggern
Article

Abstract

In this contribution, we present a technique which allows for the investigation of the local channel potentials of a poly(3-hexylthiophene) (P3HT)-based top-gate field-effect transistor. Usually it is impossible to measure the channel potentials of a top-gate transistor with a Kelvin probe force microscope (KPFM) due to the electrical shielding of the top-gate or the weak capacitive coupling of the tip through the thick substrate to the channel. However, by depositing the entire device on a water solvable polyvinyl alcohol layer, devices can be completely detached from the substrate, creating a free-standing functioning organic field-effect transistor (OFET). After detaching, it is possible to laminate the inverted device on another substrate. This method grants access to the usually hidden channel of the top-gate OFET, and therefore KPFM measurements can be performed.

Abbreviations

P3HT

poly(3-hexylthiophene)

KPFM

Kelvin probe force microscopy

OFET

organic field-effect transistor

PVA

hydrophilic polyvinyl alcohol

PET

poly(ethyleneterephthalate)

PI

polyimide

XPS

X-ray photoelectron spectroscopy

AFM

atomic force microscopy

PMMA

poly(methyl methacrylate)

rr

regio-regular

Notes

Acknowledgements

The authors thank the German Research Foundation for financial support through Graduiertenkolleg 1037, TICMO, and PolyIC, Fürth, Germany, for financial support and fruitful discussions in the framework of MaDriX founded by the German Bundesministerium für Bildung und Forschung, BMBF. Further, the authors thank Bernd Kaiser and The Center of Smart Interfaces at the Technische Universität Darmstadt for the help with the AFM measurements and Eric Mankel and Wolfram Jaegermann of the Surface Science Division in the Materials Science Department at the Technische Universität Darmstadt for the help with the XPS measurements.

References

  1. 1.
    D.H. Kim, J.H. Ahn, W.M. Choi, H.S. Kim, T.H. Kim, J.Z. Song, Y.G.Y. Huang, Z.J. Liu, C. Lu, J.A. Rogers, Science 320, 507 (2008) ADSCrossRefGoogle Scholar
  2. 2.
    M. Estrada, I. Mejia, A. Cerdeira, B. Iniguez, Solid-State Electron. 52, 53–59 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    B. Li, S. Santhanam, L. Schultz, M. Jeffries-EL, M.C. Iovu, G. Sauve, J. Cooper, R. Zhang, J.C. Revelli, A.G. Kusne, J.L. Snyder, T. Kowalewski, L.E. Weiss, R.D. McCullough, G.K. Fedder, D.N. Lambeth, Sens. Actuators B, Chem. 123, 651–660 (2007) CrossRefGoogle Scholar
  4. 4.
    M.L. Chabinyc, R.A. Street, J.E. Northrup, Appl. Phys. Lett. 90, 123508 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    I. Mejia, M. Estrada, M. Avila, Microelectron. Reliab. 48, 1795–1799 (2008) CrossRefGoogle Scholar
  6. 6.
    Y. Liu, L. Wu, P.T. Lai, Q. Zuo, Semicond. Sci. Technol. 24, 095013 (2009) (5 pp.) ADSCrossRefGoogle Scholar
  7. 7.
    B. Gburek, V. Wagner, Org. Electron. 11, 814–819 (2010) CrossRefGoogle Scholar
  8. 8.
    Y. Fu, F.Y. Tsai, Org. Electron. 12, 179–184 (2011) CrossRefGoogle Scholar
  9. 9.
    M. Nonnenmacher, M.P. Oboyle, H.K. Wickramasinghe, Appl. Phys. Lett. 58, 2921–2923 (1991) ADSCrossRefGoogle Scholar
  10. 10.
    R.A. Oliver, Rep. Prog. Phys. 71, 076501 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    S. Sadewasser, T. Glatzel, R. Shikler, Y. Rosenwaks, M.C. Lux-Steiner, Appl. Surf. Sci. 210, 32–36 (2003) ADSCrossRefGoogle Scholar
  12. 12.
    L. Burgi, T. Richards, M. Chiesa, R.H. Friend, H. Sirringhaus, Synth. Met., 146, 297–309 (2004) CrossRefGoogle Scholar
  13. 13.
    O. Tal, Y. Rosenwaks, Y. Preezant, N. Tessler, C.K. Chan, A. Kahn, Phys. Rev. Lett. 95, 256405/1-4 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    O. Tal, Y. Rosenwaks, J. Phys. Chem. B 110, 25521–25524 (2006) CrossRefGoogle Scholar
  15. 15.
    J.R. Dutcher, J.A. Forrest, K. Dalnoki-Veress, Abstr. Pap.—Am. Chem. Soc. 215, U484 (1998) Google Scholar
  16. 16.
    J. Mattsson, J.A. Forrest, L. Borjesson, Phys. Rev. E 62(4), 5187 (2000) ADSCrossRefGoogle Scholar
  17. 17.
    R. Vendamme, S.Y. Onoue, A. Nakao, T. Kunitake, Nat. Mater. 5(6), 494 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    H. Gu, T.M. Swager, Adv. Mater. 20(23), 4433 (2008) CrossRefGoogle Scholar
  19. 19.
    Q.S. Wei, S. Miyanishi, K. Tajima, K. Hashimoto, ACS Appl. Mater. Interfaces 1, 2660–2666 (2009) CrossRefGoogle Scholar
  20. 20.
    Q.S. Wei, K. Tajima, K. Hashimoto, ACS Appl. Mater. Interfaces 1, 1865–1868 (2009) CrossRefGoogle Scholar
  21. 21.
    J.B. Kim, S. Lee, M.F. Toney, Z. Chen, A. Facchetti, Y.S. Kim, Y.-L. Loo, Chem. Mater., 22, 4931–4938 (2010) CrossRefGoogle Scholar
  22. 22.
    M.S.A. Abdou, S. Holdcroft, Macromolecules 26, 2954–2962 (1993) ADSCrossRefGoogle Scholar
  23. 23.
    M.S.A. Abdou, F.P. Orfino, Y. Son, S. Holdcroft, J. Am. Chem. Soc. 119, 4518–4524 (1997) CrossRefGoogle Scholar
  24. 24.
    S. Hoshino, M. Yoshida, S. Uemura, T. Kodzasa, N. Takada, T. Kamata, K. Yase, J. Appl. Phys. 95, 5088–5093 (2004) ADSCrossRefGoogle Scholar
  25. 25.
    H.H. Liao, C.M. Yang, C.C. Liu, S.F. Horng, H.F. Meng, J.T. Shy, J. Appl. Phys. 103, 104506 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    L.A. Kehrer, S. Winter, R. Fischer, C. Melzer, H. von Seggern, Synth. Met. 161, 2558–2561 (2012) CrossRefGoogle Scholar
  27. 27.
    C. Siol, C. Melzer, H. von Seggern, Appl. Phys. Lett. 93, 133303 (2008) ADSCrossRefGoogle Scholar
  28. 28.
    O. Bayer, Chem. Unserer Zeit 2, 61 (1968) CrossRefGoogle Scholar
  29. 29.
    L. Burgi, T.J. Richards, R.H. Friend, H. Sirringhaus, J. Appl. Phys. 94, 6129–6137 (2003) ADSCrossRefGoogle Scholar
  30. 30.
    T. Yasuda, T. Goto, K. Fujita, T. Tsutsui, Appl. Phys. Lett. 85, 2098 (2004) ADSCrossRefGoogle Scholar
  31. 31.
    J. Zaumseil, C.L. Donley, J.S. Kim, R.H. Friend, H. Sirringhaus, Adv. Mater. 18, 2708 (2006) CrossRefGoogle Scholar
  32. 32.
    L.L. Chua, J. Zaumseil, J.F. Chang, E.C.W. Ou, P.K.H. Ho, H. Sirringhaus, R.H. Friend, Nature 434, 194–199 (2005) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • L. A. Kehrer
    • 1
  • E. J. Feldmeier
    • 1
  • C. Siol
    • 1
  • D. Walker
    • 1
  • C. Melzer
    • 2
  • H. von Seggern
    • 1
  1. 1.Institute of Materials Science, Electronic Materials DivisionTU DarmstadtDarmstadtGermany
  2. 2.Centre for Advanced MaterialsUniversität HeidelbergHeidelbergGermany

Personalised recommendations