Advertisement

Applied Physics A

, Volume 110, Issue 1, pp 93–98 | Cite as

Reducing the thermal conductivity of silicon by nanostructure patterning

  • Y. W. Wen
  • H. J. LiuEmail author
  • L. Pan
  • X. J. Tan
  • H. Y. Lv
  • J. Shi
  • X. F. Tang
Article

Abstract

Based on molecular dynamics simulations, we propose using nanostructure-patterned silicon for thermoelectric applications. Three typical examples are (i) fractal-like nanoporous Si, (ii) etched Si nanofilm, and (iii) quasi-periodic layered SiGe. All of them can exhibit very low thermal conductivity (less than 1.0 W m−1 K−1) and may be mass produced with standard fabrication techniques such as molecular beam epitaxy or Czochralski process. By maintaining good electronic transport of bulk Si, it is possible to achieve ZT∼5.0 at room temperature.

Keywords

Thermal Conductivity Thermoelectric Material Fibonacci Number Single Pore Thermoelectric Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the “973 Program” of China (Grant No. 2007CB607501), the National Natural Science Foundation (Grant No. 51172167), and the Program for New Century Excellent Talents in University. We also acknowledge financial support from the interdiscipline and postgraduate programs under the “Fundamental Research Funds for the Central Universities”. All the calculations were performed in the PC Cluster from Sugon Company of China.

References

  1. 1.
    L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993) CrossRefADSGoogle Scholar
  2. 2.
    L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993) CrossRefADSGoogle Scholar
  3. 3.
    D.M. Rowe, V.S. Shukla, N. Savvides, Nature 290, 765 (1981) CrossRefADSGoogle Scholar
  4. 4.
    G. Joshi, H. Lee, Y.C. Lan, X.W. Wang, G.H. Zhu, D.Z. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, Z.F. Ren, Nano Lett. 8, 4670 (2008) CrossRefADSGoogle Scholar
  5. 5.
    X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, Z.F. Ren, Appl. Phys. Lett. 93, 193121 (2008) CrossRefADSGoogle Scholar
  6. 6.
    G.H. Zhu, H. Lee, Y.C. Lan, X.W. Wang, G. Joshi, D.Z. Wang, J. Yang, D. Vashaee, H. Guilbert, A. Pillitteri, M.S. Dresselhaus, G. Chen, Z.F. Ren, Phys. Rev. Lett. 102, 196803 (2009) CrossRefADSGoogle Scholar
  7. 7.
    S.-M. Lee, D.G. Cahill, R. Venkatasubramanian, Appl. Phys. Lett. 70, 2957 (1997) CrossRefADSGoogle Scholar
  8. 8.
    S.T. Huxtable, A.R. Abramson, C.-L. Tien, A. Majumdar, C. LaBounty, X. Fan, G. Zeng, J.E. Bowers, A. Shakouri, E.T. Croke, Appl. Phys. Lett. 80, 1737 (2002) CrossRefADSGoogle Scholar
  9. 9.
    V. Samvedi, V. Tomar, J. Appl. Phys. 105, 013541 (2009) CrossRefADSGoogle Scholar
  10. 10.
    V. Samvedi, V. Tomar, Nanotechnology 20, 365701 (2009) CrossRefGoogle Scholar
  11. 11.
    D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003) CrossRefADSGoogle Scholar
  12. 12.
    I. Ponomareva, D. Srivastava, M. Menon, Nano Lett. 7, 1155 (2007) CrossRefADSGoogle Scholar
  13. 13.
    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008) CrossRefADSGoogle Scholar
  14. 14.
    A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. Yu, W.A. Goddard, J.R. Heath, Nature 451, 168 (2008) CrossRefADSGoogle Scholar
  15. 15.
    N. Mingo, L. Yang, D. Li, A. Majumdar, Nano Lett. 3, 1713 (2003) CrossRefADSGoogle Scholar
  16. 16.
    N. Mingo, D.A. Broido, Phys. Rev. Lett. 93, 246106 (2004) CrossRefADSGoogle Scholar
  17. 17.
    D. Donadio, G. Galli, Phys. Rev. Lett. 102, 195901 (2009) CrossRefADSGoogle Scholar
  18. 18.
    J. Chen, G. Zhang, B. Li, Appl. Phys. Lett. 95, 073117 (2009) CrossRefADSGoogle Scholar
  19. 19.
    J-H. Lee, J.C. Grossman, J. Reed, G. Galli, Appl. Phys. Lett. 91, 223110 (2007) CrossRefADSGoogle Scholar
  20. 20.
    C. Bera, N. Mingo, S. Volz, Phys. Rev. Lett. 104, 115502 (2010) CrossRefADSGoogle Scholar
  21. 21.
    J. Tang, H. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, P. Yang, Nano Lett. 10, 4279 (2010) CrossRefADSGoogle Scholar
  22. 22.
    P.E. Hopkins, C.M. Reinke, M.F. Su, R.H. Olsson III, E.A. Shaner, Z.C. Leseman, J.R. Serrano, L.M. Phinney, I. El-Kady, Nano Lett. 11, 107 (2011) CrossRefADSGoogle Scholar
  23. 23.
    J.-H. Lee, G.A. Galli, J.C. Grossman, Nano Lett. 8, 3750 (2008) CrossRefADSGoogle Scholar
  24. 24.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995). Code available at: http://lammps.sandia.gov/download.html zbMATHCrossRefADSGoogle Scholar
  25. 25.
    W.G. Hoover, D.J. Evans, R.B. Hickman, A.J.C. Ladd, W.T. Ashurst, B. Moran, Phys. Rev. B 22, 1690 (1980) ADSGoogle Scholar
  26. 26.
    W.G. Hoover, A.J.C. Ladd, B. Moran, Phys. Rev. Lett. 48, 1818 (1982) CrossRefADSGoogle Scholar
  27. 27.
    D. MacGowan, D.J. Evans, Phys. Rev. A 34, 2133 (1986) CrossRefADSGoogle Scholar
  28. 28.
    D. MacGowan, D.J. Evans, Phys. Rev. A 36, 948 (1987) CrossRefADSGoogle Scholar
  29. 29.
    G.V. Paolini, G. Ciccotti, Phys. Rev. A 35, 5156 (1987) CrossRefADSGoogle Scholar
  30. 30.
    P. Sindzingre, G. Ciccotti, C. Massobrio, D. Frenkel, Chem. Phys. Lett. 136, 35 (1987) CrossRefADSGoogle Scholar
  31. 31.
    R. Vogelsang, C. Hoheisel, G. Paolini, G. Ciccotti, Phys. Rev. A 36, 3964 (1987) CrossRefADSGoogle Scholar
  32. 32.
    P.K. Schelling, S.R. Phillpot, P. Keblinski, Phys. Rev. B 65, 144306 (2002) CrossRefADSGoogle Scholar
  33. 33.
    F.H. Stillinger, T.A. Weber, Phys. Rev. B 31, 5262 (1985) CrossRefADSGoogle Scholar
  34. 34.
    J. Tersoff, Phys. Rev. B 39, 5566 (1989) CrossRefADSGoogle Scholar
  35. 35.
    T. Markussen, A.P. Jauho, M. Brandbyge, Nano Lett. 8, 3771 (2008) CrossRefADSGoogle Scholar
  36. 36.
    Q.H. Tang, Mol. Phys. 102, 1959 (2004) CrossRefADSGoogle Scholar
  37. 37.
    L. Sun, J.Y. Murthy, Appl. Phys. Lett. 89, 171919 (2006) CrossRefADSGoogle Scholar
  38. 38.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993) CrossRefADSGoogle Scholar
  39. 39.
    G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994) CrossRefADSGoogle Scholar
  40. 40.
    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Y. W. Wen
    • 1
    • 2
  • H. J. Liu
    • 1
    Email author
  • L. Pan
    • 1
  • X. J. Tan
    • 1
  • H. Y. Lv
    • 1
  • J. Shi
    • 1
  • X. F. Tang
    • 3
  1. 1.Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and TechnologyWuhan UniversityWuhanChina
  2. 2.Department of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhanChina
  3. 3.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina

Personalised recommendations