Applied Physics A

, Volume 110, Issue 2, pp 281–307 | Cite as

Flexible and stretchable electrodes for dielectric elastomer actuators

  • Samuel RossetEmail author
  • Herbert R. Shea
Invited paper


Dielectric elastomer actuators (DEAs) are flexible lightweight actuators that can generate strains of over 100 %. They are used in applications ranging from haptic feedback (mm-sized devices), to cm-scale soft robots, to meter-long blimps. DEAs consist of an electrode-elastomer-electrode stack, placed on a frame. Applying a voltage between the electrodes electrostatically compresses the elastomer, which deforms in-plane or out-of plane depending on design. Since the electrodes are bonded to the elastomer, they must reliably sustain repeated very large deformations while remaining conductive, and without significantly adding to the stiffness of the soft elastomer. The electrodes are required for electrostatic actuation, but also enable resistive and capacitive sensing of the strain, leading to self-sensing actuators. This review compares the different technologies used to make compliant electrodes for DEAs in terms of: impact on DEA device performance (speed, efficiency, maximum strain), manufacturability, miniaturization, the integration of self-sensing and self-switching, and compatibility with low-voltage operation. While graphite and carbon black have been the most widely used technique in research environments, alternative methods are emerging which combine compliance, conduction at over 100 % strain with better conductivity and/or ease of patternability, including microfabrication-based approaches for compliant metal thin-films, metal-polymer nano-composites, nanoparticle implantation, and reel-to-reel production of μm-scale patterned thin films on elastomers. Such electrodes are key to miniaturization, low-voltage operation, and widespread commercialization of DEAs.


Dielectric elastomer actuators Compliant electrodes Carbon Metal thin-films 



The authors wish to express their sincere thanks professor Siegfried Bauer for his precious advices regarding the preparation of the manuscript. The authors also thank Samin Akbari, Luc Maffli, and Benjamin O’Brien for their helpful collaboration. This work was supported by the Swiss National Science foundation grant 200020-140394, COST action MP1003, and the Indo Swiss joint research programme (ISJRP).


  1. 1.
    R.E. Pelrine, R.D. Kornbluh, J.P. Joseph, Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens. Actuators A, Phys. 64(1), 77–85 (1998) CrossRefGoogle Scholar
  2. 2.
    F. Carpi, S. Bauer, D. De Rossi, Stretching dielectric elastomer performance. Science 330(6012), 1759–1761 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    C. Keplinger, M. Kaltenbrunner, N. Arnold, S. Bauer, Roentgen’s electrode-free elastomer actuators without electromechanical pull-in instability. Proc. Natl. Acad. Sci. USA 107(10), 4505–4510 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, High-speed electrically actuated elastomers with strain greater than 100 %. Science 287(5454), 836–839 (2000) ADSCrossRefGoogle Scholar
  5. 5.
    F. Carpi, R. Kornbluh, P. Sommer-Larsen, G. Alici, Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications? Bioinspiration and Biomimetics 6(4), 045006 (2011) ADSCrossRefGoogle Scholar
  6. 6.
    P. Brochu, Q. Pei, Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 31(1), 10–36 (2010) CrossRefGoogle Scholar
  7. 7.
    R. Kornbluh, R. Pelrine, J. Eckerle, J. Joseph, Electrostrictive polymer artificial muscle actuators, in Proceedings of IEEE International Conference on Robotics and Automation, vol. 3 (1998), pp. 2147–2154 Google Scholar
  8. 8.
    R. Kornbluh, R. Pelrine, Q. Pei, S. Oh, J. Joseph, Ultrahigh strain response of field-actuated elastomeric polymers, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 3987 (2000), pp. 51–64 Google Scholar
  9. 9.
    R. Pelrine, R. Kornbluh, J. Joseph, R. Heydt, Q. Pei, S. Chiba, High-field deformation of elastomeric dielectrics for actuators. Materials Science and Engineering C 11(2), 89–100 (2000) CrossRefGoogle Scholar
  10. 10.
    J.D.W. Madden, N.A. Vandesteeg, P.A. Anquetil, P.G.A. Madden, A. Takshi, R.Z. Pytel, S.R. Lafontaine, P.A. Wieringa, I.W. Hunter, Artificial muscle technology: physical principles and naval prospects. IEEE J. Ocean. Eng. 29(3), 706–728 (2004) CrossRefGoogle Scholar
  11. 11.
    I.A. Anderson, T.A. Gisby, T.G. McKay, B.M. O’Brien, E.P. Calius, Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J. Appl. Phys. 112(4), 041101 (2012) ADSCrossRefGoogle Scholar
  12. 12.
    I.A. Anderson, T. Hale, T. Gisby, T. Inamura, T. McKay, B. O’Brien, S. Walbran, E.P. Calius, A thin membrane artificial muscle rotary motor. Appl. Phys. A, Mater. Sci. Process. 98(1), 75–83 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    S. Wagner, S. Bauer, Materials for stretchable electronics. Mater. Res. Soc. Bull. 37(3), 207–213 (2012) CrossRefGoogle Scholar
  14. 14.
    D.-H. Kim, Y. Lu, N. Huang, J.A. Rogers, Materials for stretchable electronics in bioinspired and biointegrated devices. Mater. Res. Soc. Bull. 37(3), 226–235 (2012) CrossRefGoogle Scholar
  15. 15.
    T. Sekitani, T. Someya, Stretchable organic integrated circuits for large-area electronic skin surfaces. Mater. Res. Soc. Bull. 37(3), 236–245 (2012) CrossRefGoogle Scholar
  16. 16.
    J. Vanfleteren, M. Gonzalez, F. Bossuyt, Y.-Y. Hsu, T. Vervust, I. De Wolf, M. Jablonski, Printed circuit board technology inspired stretchable circuits. Mater. Res. Soc. Bull. 37(3), 254–260 (2012) CrossRefGoogle Scholar
  17. 17.
    D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K. Jun Yu, T.-i. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.-J. Chung, H. Keum, M. McCormick, P. Liu, Y.-W. Zhang, F.G. Omenetto, Y. Huang, T. Coleman, J.A. Rogers, Epidermal electronics. Science 333(6044), 838–843 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    P. Jean, A. Wattez, G. Ardoise, C. Melis, R. Van Kessel, A. Fourmon, E. Barrabino, J. Heemskerk, J.P. Queau, Standing wave tube electro active polymer wave energy converter, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 8340, ed. by Y. Bar-Cohen (SPIE, Bellingham, 2012), p. 83400C Google Scholar
  19. 19.
    B.M. O’Brien, E.P. Calius, T. Inamura, S.Q. Xie, I.A. Anderson, Dielectric elastomer switches for smart artificial muscles. Appl. Phys. A, Mater. Sci. Process. 100(2), 385–389 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    F. Carpi, P. Chiarelli, A. Mazzoldi, D. De Rossi, Dielectric elastomer planar actuators for small scale applications, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 4763 (2002), pp. 169–172 Google Scholar
  21. 21.
    F. Carpi, P. Chiarelli, A. Mazzoldi, D. De Rossi, Electromechanical characterisation of dielectric elastomer planar actuators: comparative evaluation of different electrode materials and different counterloads. Sens. Actuators A, Phys. 107(1), 85–95 (2003) CrossRefGoogle Scholar
  22. 22.
    B. O’Brien, J. Thode, I. Anderson, E. Calius, E. Haemmerle, S. Xie, Integrated extension sensor based on resistance and voltage measurement for a dielectric elastomer, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 6524 (SPIE, San Diego, 2007), p. 652415 Google Scholar
  23. 23.
    J.C. Huang, Carbon black filled conducting polymers and polymer blends. Adv. Polym. Technol. 21(4), 299–313 (2002) CrossRefGoogle Scholar
  24. 24.
    S.-P. Rwei, F.-H. Ku, K.-C. Cheng, Dispersion of carbon black in a continuous phase: electrical, rheological, and morphological studies. Colloid Polym. Sci. 280(12), 1110–1115 (2002) CrossRefGoogle Scholar
  25. 25.
    L.A. Toth, A.A. Goldenberg, Control system design for a dielectric elastomer actuator: the sensory subsystem, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 4695 (2002), pp. 323–334 Google Scholar
  26. 26.
    K. Jung, K.J. Kim, H.R. Choi, A self-sensing dielectric elastomer actuator. Sens. Actuators A, Phys. 143(2), 343–351 (2008) MathSciNetCrossRefGoogle Scholar
  27. 27.
    R. Kornbluh, R. Pelrine, J. Joseph, R. Heydt, Q. Pei, S. Chiba, High-field electrostriction of elastomeric polymer dielectrics for actuation, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 3669 (1999), pp. 149–161 Google Scholar
  28. 28.
    H.F. Schlaak, M. Jungmann, M. Matysek, P. Lotz, Novel multilayer electrostatic solid-state actuators with elastic dielectric, in Electroactive Polymer Actuators and Devices (EAPAD) 2005, vol. 5759 (2005), pp. 121–133 CrossRefGoogle Scholar
  29. 29.
    M. Matysek, P. Lotz, K. Flittner, H.F. Schlaak, High-precision characterization of dielectric elastomer stack actuators and their material parameters. in Proceedings of SPIE, vol. 6927 (2008) Google Scholar
  30. 30.
    H. Schlaak, P. Lotz, M. Matysek, Multilayer Stack Contractile Actuators (Elsevier, Amsterdam, 2008), pp. 109–122. Chap. 11 Google Scholar
  31. 31.
    P. Lotz, H.F. Matysek, M. Schlaak, Fabrication and application of miniaturized dielectric elastomer stack actuators. IEEE/ASME Trans. Mechatron. 16(1), 58–66 (2011) CrossRefGoogle Scholar
  32. 32.
    G. Kofod, Dielectric elastomer actuators. Ph.D. Thesis, The Technical University of Denmark (2001) Google Scholar
  33. 33.
    F. Carpi, C. Salaris, D. De Rossi, Folded dielectric elastomer actuators. Smart Mater. Struct. 16(2), S300–S305 (2007) ADSCrossRefGoogle Scholar
  34. 34.
    M. Aschwanden, D. Niederer, A. Stemmer, Tunable transmission gratings based on dielectric elastomer actuators, in Electroactive Polymer Actuators and Devices (EAPAD) 2008, vol. 6927 (SPIE, San Diego, 2008), p. 56 CrossRefGoogle Scholar
  35. 35.
    P. Lochmatter, G. Kovacs, Design and characterization of an active hinge segment based on soft dielectric eaps. Sens. Actuators A, Phys. 141(2), 577–587 (2008) CrossRefGoogle Scholar
  36. 36.
    G. Kovacs, L. During, Contractive tension force stack actuator based on soft dielectric eap, in Electroactive Polymer Actuators and Devices (EAPAD) 2009, vol. 7287, ed. by Y. Bar-Cohen, T. Wallmersperger (SPIE, Bellingham, 2009), p. 72870A CrossRefGoogle Scholar
  37. 37.
    F. Carpi, D. De Rossi, Dielectric elastomer cylindrical actuators: electromechanical modelling and experimental evaluation. Materials Science and Engineering C 24(4), 555–562 (2004) CrossRefGoogle Scholar
  38. 38.
    A.P. Gerratt, M. Tellers, S. Bergbreiter, Soft polymer mems, in Proccedings of IEEE 24th Int Micro Electro Mechanical Systems (MEMS) Conference (2011), pp. 332–335 Google Scholar
  39. 39.
    M. Kujawski, J.D. Pearse, E. Smela, Elastomers filled with exfoliated graphite as compliant electrodes. Carbon 48(9), 2409–2417 (2010) CrossRefGoogle Scholar
  40. 40.
    J.J. Loverich, I. Kanno, H. Kotera, Concepts for a new class of all-polymer micropumps. Lab Chip 6(9), 1147–1154 (2006) CrossRefGoogle Scholar
  41. 41.
    M. Matysek, P. Lotz, T. Winterstein, H.F. Schlaak, Dielectric elastomer actuators for tactile displays, in Proceedings of 3rd Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, World Haptics 2009 (2009), pp. 290–295 CrossRefGoogle Scholar
  42. 42.
    O.A. Araromi, A.T. Conn, C.S. Ling, J.M. Rossiter, R. Vaidyanathan, S.C. Burgess, Spray deposited multilayered dielectric elastomer actuators. Sens. Actuators A, Phys. 167(2), 459–467 (2011) CrossRefGoogle Scholar
  43. 43.
    M. Aschwanden, A. Stemmer, Low voltage, highly tunable diffraction grating based on dielectric elastomer actuators, in Electroactive Polymer Actuators and Devices (EAPAD) 2007, vol. 6524 (SPIE, San Diego, 2007), p. 65241N CrossRefGoogle Scholar
  44. 44.
    F.C. Krebs, Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93(4), 394–412 (2009) CrossRefGoogle Scholar
  45. 45.
    A.P. Robinson, I. Minev, I.M. Graz, S.P. Lacour, Microstructured silicone substrate for printable and stretchable metallic films. Langmuir 27(8), 4279–4284 (2011) CrossRefGoogle Scholar
  46. 46.
    E. Tekin, B.-J. De Gans, U.S. Schubert, Ink-jet printing of polymers—from single dots to thin film libraries. J. Mater. Chem. 14(17), 2627–2632 (2004) CrossRefGoogle Scholar
  47. 47.
    C. Keplinger, T. Li, R. Baumgartner, Z. Suo, S. Bauer, Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation. Soft Matter 8, 285–288 (2012) ADSCrossRefGoogle Scholar
  48. 48.
    S. Wang, P. Wang, T. Ding, Resistive viscoelasticity of silicone rubber/carbon black composite. Polym. Compos. 32(1), 29–35 (2011) CrossRefGoogle Scholar
  49. 49.
    S. Rosset, M. Niklaus, P. Dubois, M. Dadras, H.R. Shea, Mechanical properties of electroactive polymer microactuators with ion-implanted electrodes, in Electroactive Polymer Actuators and Devices (EAPAD) 2007, vol. 6524 (SPIE, San Diego, 2007), p. 652410 CrossRefGoogle Scholar
  50. 50.
    A. Pimpin, Y. Suzuki, N. Kasagi, Microelectrostrictive actuator with large out-of-plane deformation for flow-control application. J. Microelectromech. Syst. 16(3), 753–764 (2007) CrossRefGoogle Scholar
  51. 51.
    R. Verplancke, F. Bossuyt, D. Cuypers, J. Vanfleteren, Thin-film stretchable electronics technology based on meandering interconnections: fabrication and mechanical performance. J. Micromech. Microeng. 22(1), 015002 (2012). doi: 10.1088/0960-1317/22/1/015002 ADSCrossRefGoogle Scholar
  52. 52.
    M. Gonzalez, F. Axisa, M. Vanden Bulcke, D. Brosteaux, B. Vandevelde, J. Vanfleteren, Design of metal interconnects for stretchable electronic circuits. Microelectron. Reliab. 48(6), 825–832 (2008) CrossRefGoogle Scholar
  53. 53.
    A. Pimpin, Y. Suzuki, N. Kasagi, Micro electrostrictive actuator with metal compliant electrodes for flow control applications, in Proccedings of 17th IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (2004), pp. 478–481 Google Scholar
  54. 54.
    N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393(6681), 146–149 (1998). doi: 10.1038/30193 ADSCrossRefGoogle Scholar
  55. 55.
    S.P. Lacour, J. Jones, Z. Suo, S.A. Wagner, S. Wagner, Design and performance of thin metal film interconnects for skin-like electronic circuits. IEEE Electron Device Lett. 25(4), 179–181 (2004) ADSCrossRefGoogle Scholar
  56. 56.
    M. Maghribi, J. Hamilton, D. Polla, K. Rose, T. Wilson, P. Krulevitch, Stretchable micro-electrode array [for retinal prosthesis], in Conference on Microtechnologies in Medicine Biology 2nd Annual International IEEE-EMB Special Topic (2002), pp. 80–83 Google Scholar
  57. 57.
    A.L. Volynskii, S. Bazhenov, O.V. Lebedeva, N.F. Bakeev, Mechanical buckling instability of thin coatings deposited on soft polymer substrates. J. Mater. Sci. 35(3), 547–554 (2000) ADSCrossRefGoogle Scholar
  58. 58.
    M. Benslimane, P. Gravesen, P. Sommer-Larsen, Mechanical properties of dielectric elastomer actuators with smart metallic compliant electrodes, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 4695 (SPIE, Bellingham, 2002), pp. 150–157 Google Scholar
  59. 59.
    H.-E. Kiil, M. Benslimane, Scalable industrial manufacturing of deap, in Proceedings of SPIE, vol. 7287 (2009) Google Scholar
  60. 60.
    M. Benslimane, H.-E. Kiil, M.J. Tryson, Electromechanical properties of novel large strain polypower film and laminate components for deap actuator and sensor applications, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 7642 (2010) Google Scholar
  61. 61.
    K. Sidler, O. Vazquez-Mena, V. Savu, G. Villanueva, M.A.F. van den Boogaart, J. Brugger, Resistivity measurements of gold wires fabricated by stencil lithography on flexible polymer substrates. Microelectron. Eng. 85(5–6), 1108–1111 (2008). Proceedings of the Micro- and Nano-Engineering 2007 Conference—MNE 2007 CrossRefGoogle Scholar
  62. 62.
    O. Vazquez-Mena, G. Villanueva, V. Savu, K. Sidler, M.A.F. van den Boogaart, J. Brugger, Metallic nanowires by full wafer stencil lithography. Nano Lett. 8(11), 3675–3682 (2008). PMID: 18817451 ADSCrossRefGoogle Scholar
  63. 63.
    S. Perichon Lacour, S. Wagner, Z. Huang, Z. Suo, Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82(15), 2404–2406 (2003) ADSCrossRefGoogle Scholar
  64. 64.
    T. Adrega, S.P. Lacour, Stretchable gold conductors embedded in pdms and patterned by photolithography: fabrication and electromechanical characterization. J. Micromech. Microeng. 20(5), 055025 (2010) ADSCrossRefGoogle Scholar
  65. 65.
    L. Guo, S.P. DeWeerth, An effective lift-off method for patterning high-density gold interconnects on an elastomeric substrate. Small 6(24), 2847–2852 (2010) CrossRefGoogle Scholar
  66. 66.
    J.N. Patel, B.L. Gray, B. Kaminska, B.D. Gates, Flexible glucose sensor utilizing multilayer pdms process, in Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS’08 (2008), pp. 5749–5752 CrossRefGoogle Scholar
  67. 67.
    J.N. Patel, B. Kaminska, B.L. Gray, B.D. Gates, A sacrificial su-8 mask for direct metallization on pdms. J. Micromech. Microeng. 19(11), 115014 (2009) ADSCrossRefGoogle Scholar
  68. 68.
    R.M. Diebold, D.R. Clarke, Lithographic patterning on polydimethylsiloxane surfaces using polydimethylglutarimide. Lab Chip 11, 1694–1697 (2011) CrossRefGoogle Scholar
  69. 69.
    I.M. Graz, D.P.J. Cotton, S.P. Lacour, Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates. Appl. Phys. Lett. 94(7), 071902 (2009) ADSCrossRefGoogle Scholar
  70. 70.
    S. Rosset, M. Niklaus, P. Dubois, H.R. Shea, Metal ion implantation for the fabrication of stretchable electrodes on elastomers. Adv. Funct. Mater. 19(3), 470–478 (2009) CrossRefGoogle Scholar
  71. 71.
    P. Dubois, S. Rosset, S. Koster, J.M. Buforn, J. Stauffer, S. Mikhailov, M. Dadras, N.F. De Rooij, H. Shea, Microactuators based on ion-implanted dielectric electroactive polymer membranes (eap), in Digest of Technical Papers—International Conference on Solid State Sensors and Actuators and Microsystems, TRANSDUCERS’05, vol. 2 (2005), pp. 2048–2051 Google Scholar
  72. 72.
    P. Dubois, S. Rosset, S. Koster, J. Stauffer, S. Mikhailov, M. Dadras, N.-F. de Rooij, H. Shea, Microactuators based on ion implanted dielectric electroactive polymer (eap) membranes. Sens. Actuators A, Phys. 130(131), 147–154 (2006) CrossRefGoogle Scholar
  73. 73.
    S. Rosset, M. Niklaus, P. Dubois, H.R. Shea, Mechanical characterization of a dielectric elastomer microactuator with ion-implanted electrodes. Sens. Actuators A, Phys. 144(1), 185–193 (2008) CrossRefGoogle Scholar
  74. 74.
    M. Niklaus, H.R. Shea, Electrical conductivity and Young’s modulus of flexible nanocomposites made by metal-ion implantation of polydimethylsiloxane: the relationship between nanostructure and macroscopic properties. Acta Mater. 59(2), 830–840 (2011) CrossRefGoogle Scholar
  75. 75.
    G. Corbelli, C. Ghisleri, M. Marelli, P. Milani, L. Ravagnan, Highly deformable nanostructured elastomeric electrodes with improving conductivity upon cyclical stretching. Adv. Mater. 23(39), 4504–4508 (2011) CrossRefGoogle Scholar
  76. 76.
    A. Anders, S. Anders, I.G. Brown, Transport of vacuum arc plasmas through magnetic macroparticle filters. Plasma Sources Sci. Technol. 4(1), 1–12 (1995) ADSCrossRefGoogle Scholar
  77. 77.
    S. Rosset, M. Niklaus, P. Dubois, H.R. Shea, Large-stroke dielectric elastomer actuators with ion-implanted electrodes. J. Microelectromech. Syst. 18(6), 1300–1308 (2009) CrossRefGoogle Scholar
  78. 78.
    K. Wegner, P. Piseri, H. Vahedi Tafreshi, P. Milani, Cluster beam deposition: a tool for nanoscale science and technology. J. Phys. D, Appl. Phys. 39(22), R439 (2006) ADSCrossRefGoogle Scholar
  79. 79.
    S. Akbari, H.R. Shea, An array of 100 μm × 100 μm dielectric elastomer actuators with 80 % strain for tissue engineering applications. Sens. Actuators A, Phys. 186, 236–241 (2012) CrossRefGoogle Scholar
  80. 80.
    M.G. Urdaneta, R. Delille, E. Smela, Stretchable electrodes with high conductivity and photo-patternability. Adv. Mater. 19(18), 2629–2633 (2007) CrossRefGoogle Scholar
  81. 81.
    R. Delille, M. Urdaneta, K. Hsieh, E. Smela, Novel compliant electrodes based on platinum salt reduction, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 6168 (2006) Google Scholar
  82. 82.
    R. Delille, M. Urdaneta, K. Hsieh, E. Smela, Compliant electrodes based on platinum salt reduction in a urethane matrix. Smart Mater. Struct. 16(2), S272 (2007) ADSCrossRefGoogle Scholar
  83. 83.
    W. Yuan, T. Lam, J. Biggs, L. Hu, Z. Yu, S. Ha, D. Xi, M.K. Senesky, G. Gruner, Q. Pei, New electrode materials for dielectric elastomer actuators, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 6524 (SPIE, San Diego, 2007), p. 65240N Google Scholar
  84. 84.
    W. Yuan, L. Hu, Z. Yu, T. Lam, J. Biggs, S.M. Ha, D. Xi, B. Chen, M.K. Senesky, G. Gruner, Q. Pei, Fault-tolerant dielectric elastomer actuators using single-walled carbon nanotube electrodes. Adv. Mater. 20(3), 621–625 (2008) CrossRefGoogle Scholar
  85. 85.
    G.-K. Lau, S.C.-K. Goh, L.-L. Shiau, Dielectric elastomer unimorph using flexible electrodes of electrolessly deposited (eld) silver. Sens. Actuators A, Phys. 169(1), 234–241 (2011) CrossRefGoogle Scholar
  86. 86.
    S.G. Chun-Kiat, G.-K. Lau, Dielectric elastomeric bimorphs using electrolessly deposited silver electrodes, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 7642 (2010) Google Scholar
  87. 87.
    S.H. Low, G.K. Lau, High actuation strain in silicone dielectric elastomer actuators with silver electrodes, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 7976 (2011), p. 797636 Google Scholar
  88. 88.
    T. Lam, H. Tran, W. Yuan, Z. Yu, S. Ha, R. Kaner, Q. Pei, Polyaniline nanofibers as a novel electrode material for fault-tolerant dielectric elastomer actuators, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 6927, ed. by Y. Bar-Cohen (SPIE, Bellingham, 2008), p. 69270O Google Scholar
  89. 89.
    L. Hu, W. Yuan, P. Brochu, G. Gruner, Q. Pei, Highly stretchable, conductive, and transparent nanotube thin films. Appl. Phys. Lett. 94(16), 161108 (2009) ADSCrossRefGoogle Scholar
  90. 90.
    S. Yun, X. Niu, Z. Yu, W. Hu, P. Brochu, Q. Pei, Compliant silver nanowire-polymer composite electrodes for bistable large strain actuation. Adv. Mater. 24(10), 1321–1327 (2012) CrossRefGoogle Scholar
  91. 91.
    S. Shian, R.M. Diebold, A. McNamara, D.R. Clarke, Highly compliant transparent electrodes. Appl. Phys. Lett. 101(6), 061101 (2012) ADSCrossRefGoogle Scholar
  92. 92.
    F. Carpi, G. Frediani, S. Turco, D. De Rossi, Bioinspired tunable lens with muscle-like electroactive elastomers. Adv. Funct. Mater. 21(21), 4152–4158 (2011) CrossRefGoogle Scholar
  93. 93.
    Z. Yu, W. Yuan, P. Brochu, B. Chen, Z. Liu, Q. Pei, Large-strain, rigid-to-rigid deformation of bistable electroactive polymers. Appl. Phys. Lett. 95(19), 192904 (2009) ADSCrossRefGoogle Scholar
  94. 94.
    F. Carpi, G. Frediani, D. De Rossi, Opportunities of hydrostatically coupled dielectric elastomer actuators for haptic interfaces, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 7976 (2011) Google Scholar
  95. 95.
    M. Matysek, P. Lotz, K. Flittner, H.F. Schlaak, Vibrotactile display for mobile applications based on dielectric elastomer stack actuators, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 7642, ed. by Y. Bar-Cohen (SPIE, Bellingham, 2010), p. 76420D Google Scholar
  96. 96.
    M. Matysek, H. Haus, H. Moessinger, D. Brokken, P. Lotz, H.F. Schlaak, Combined driving and sensing circuitry for dielectric elastomer actuators in mobile applications, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 7976, ed. by Y. Bar-Cohen, F. Carpi (SPIE, Bellingham, 2011), p. 797612 Google Scholar
  97. 97.
    F. Carpi, D. De Rossi, Improvement of electromechanical actuating performances of a silicone dielectric elastomer by dispersion of titanium dioxide powder. IEEE Trans. Dielectr. Electr. Insul. 12(4), 835–843 (2005) CrossRefGoogle Scholar
  98. 98.
    Z. Zhang, L. Liu, J. Fan, K. Yu, Y. Liu, L. Shi, J. Leng, New silicone dielectric elastomers with a high dielectric constant, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 6926 (2008), p. 692610 Google Scholar
  99. 99.
    S. Risse, B. Kussmaul, H. Kruger, R. Wache, G. Kofod, Dea material enhancement with dipole grafted pdms networks, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 7976 (2011), p. 79760N Google Scholar
  100. 100.
    I.M. Ward, J. Sweeney, The Mechanical Properties of Solid Polymers (Wiley, Chichester, 2004) Google Scholar
  101. 101.
    A.P. Gerratt, B. Balakrisnan, I. Penskiy, S. Bergbreiter, Batch fabricated bidirectional dielectric elastomer actuators, in 16th International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS’11 (2011), pp. 2422–2425 CrossRefGoogle Scholar
  102. 102.
    A.P. Gerratt, I. Penskiy, S. Bergbreiter, Soi/elastomer process for energy storage and rapid release. J. Micromech. Microeng. 20(10), 104011 (2010) ADSCrossRefGoogle Scholar
  103. 103.
    B. O’Brien, S. Rosset, I. Anderson, H. Shea, Ion implanted dielectric elastomer switches. Appl. Phys. A (2012, accepted). doi: 10.1007/s00339-012-7319-2
  104. 104.
    R.D. Kornbluh, R. Pelrine, H. Prahlad, A. Wong-Foy, B. McCoy, S. Kim, J. Eckerle, T. Low, From boots to buoys: promises and challenges of dielectric elastomer energy harvesting. in Proceedings of SPIE—The International Society for Optical Engineering, vol. 7976, ed. by Y. Bar-Cohen, F. Carpi (SPIE, Bellingham, 2011), p. 797605 Google Scholar
  105. 105.
    S. Chiba, M. Waki, R. Kornbluh, R. Pelrine, Innovative power generators for energy harvesting using electroactive polymer artificial muscles, in Electroactive Polymer Actuators and Devices (EAPAD) 2008, vol. 6927, ed. by Y. Bar-Cohen (SPIE, Bellingham, 2008), p. 692715 CrossRefGoogle Scholar
  106. 106.
    S.J.A. Koh, C. Keplinger, T. Li, S. Bauer, Z. Suo, Dielectric elastomer generators: how much energy can be converted? IEEE/ASME Trans. Mechatron. 16(1), 33–41 (2011) CrossRefGoogle Scholar
  107. 107.
    G. Kang, K.-S. Kim, S. Kim, Note: Analysis of the efficiency of a dielectric elastomer generator for energy harvesting. Rev. Sci. Instrum. 82(4), 046101 (2011) ADSCrossRefGoogle Scholar
  108. 108.
    C.C. Foo, S.J.A. Koh, C. Keplinger, R. Kaltseis, S. Bauer, Z. Suo, Performance of dissipative dielectric elastomer generators. J. Appl. Phys. 111(9), 094107 (2012) ADSCrossRefGoogle Scholar
  109. 109.
    T.G. McKay, B.M. O’Brien, E.P. Calius, I.A. Anderson, Soft generators using dielectric elastomers. Appl. Phys. Lett. 98(14), 142903 (2011) ADSCrossRefGoogle Scholar
  110. 110.
    T. McKay, B. O’Brien, E. Calius, I. Anderson, Self-priming dielectric elastomer generators. Smart Mater. Struct. 19(5), 055025 (2010) ADSCrossRefGoogle Scholar
  111. 111.
    R. Kaltseis, C. Keplinger, R. Baumgartner, M. Kaltenbrunner, T. Li, P. Mächler, R. Schwödiauer, Z. Suo, S. Bauer, Method for measuring energy generation and efficiency of dielectric elastomer generators. Appl. Phys. Lett. 99(16), 162904 (2011) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Ecole Polytechnique Fédérale de Lausanne (EPFL)NeuchâtelSwitzerland

Personalised recommendations