Advertisement

Applied Physics A

, Volume 109, Issue 4, pp 835–840 | Cite as

Enhancing coherent nonlinear-optical processes in nonmagnetic backward-wave materials

  • Alexander K. Popov
  • Mikhail I. Shalaev
  • Sergey A. Myslivets
  • Vitaly V. Slabko
  • Igor S. Nefedov
Article

Abstract

Novel concepts of nonlinear-optical (NLO) photonic metamaterials (MMs) are proposed. They concern with greatly enhanced coherent NLO energy exchange between ordinary and backward waves (BWs) through the frequency-conversion processes. Two different classes of materials which support BWs are considered: crystals that support optical phonons with negative group velocity and MMs with specially engineered spatial dispersion. The possibility to replace plasmonic NLO MMs enabling magnetic response at optical frequencies, which are very challenging to engineer, by the ordinary readily available crystals, are discussed. The possibility to mimic extraordinary NLO frequency-conversion propagation processes attributed to negative-index MMs (NIMs) is shown in some of such crystals, if optical phonons with negative group velocity and a proper phase-matching geometry are implemented. Here, optical phonons are used as one of the coupled counterparts instead of backward electromagnetic waves (BEMWs). The appearance of BEMWs in metaslabs made of carbon nanotubes, the possibilities and extraordinary properties of BW second harmonic generation in such MMs is another option of nonmagnetic NIMs, which is described too. Among the applications of the proposed photonic materials is the possibility of creation of a family of unique BW photonic devices such as frequency doubling metamirror and Raman amplifiers with greatly improved efficiency.

Keywords

Second Harmonic Generation Optical Phonon Stimulate Raman Scattering Control Field Third Harmonic Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work was supported in part by the U.S. National Science Foundation under Grant No. ECCS-1028353, by the US Air Force Office of Scientific Research under Grant No. FA9550-12-1-298; by the Presidium of the Russian Academy of Sciences under Project No. 24.31, by the Ministry of Science under Federal Research Program No. 14.V37.21.0730 and by the Siberian Division of the Russian Academy of Sciences and Siberian Federal University under Integration Project No. 101; and by the Academy of Finland and Nokia through the Center-of-Excellence program.

References

  1. 1.
    A.K. Popov, Nonlinear optics of backward waves and extraordinary features of plasmonic nonlinear-optical microdevices. Eur. Phys. J. D 58, 263–274 (2010) (topical issue on Laser Dynamics and Nonlinear Photonics) ADSCrossRefGoogle Scholar
  2. 2.
    A.K. Popov, V.M. Shalaev, Merging nonlinear optics and negative-index metamaterials. Proc. SPIE 8093-6, 1–27 (2011) Google Scholar
  3. 3.
    I.V. Shadrivov, A.A. Zharov, Yu.S. Kivshar, Second-harmonic generation in nonlinear left-handed metamaterials. J. Opt. Soc. Am. B 23, 529–534 (2006) ADSCrossRefGoogle Scholar
  4. 4.
    M. Scalora, G. D’Aguanno, M. Bloemer, M. Centini, N. Mattiucci, D. de Ceglia, Yu.S. Kivshar, Dynamics of short pulses and phase matched second harmonic generation in negative index materials. Opt. Express 14, 4746–4756 (2006) ADSCrossRefGoogle Scholar
  5. 5.
    A.K. Popov, V.V. Slabko, V.M. Shalaev, Second harmonic generation in left-handed metamaterials. Laser Phys. Lett. 3, 293–296 (2006) ADSCrossRefGoogle Scholar
  6. 6.
    A.K. Popov, V.M. Shalaev, Negative-index metamaterials: second-harmonic generation, Manley–Rowe relations and parametric amplification. Appl. Phys. B, Lasers Opt. 84, 131–137 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    A.K. Popov, V.M. Shalaev, Compensating losses in negative-index metamaterials by optical parametric amplification. Opt. Lett. 31, 2169–2171 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    A.K. Popov, S.A. Myslivets, T.F. George, V.M. Shalaev, Four-wave mixing, quantum control, and compensating losses in doped negative-index photonic metamaterials. Opt. Lett. 32, 3044–3046 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    A.K. Popov, S.A. Myslivets, Transformable broad-band transparency and amplification in negative-index films. Appl. Phys. Lett. 93, 191117(3) (2008) ADSGoogle Scholar
  10. 10.
    A.K. Popov, S.A. Myslivets, V.M. Shalaev, Resonant nonlinear optics of backward waves in negative-index metamaterials. Appl. Phys. B, Lasers Opt. 96, 315–323 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    A.K. Popov, S.A. Myslivets, V.M. Shalaev, Microscopic mirrorless negative-index optical parametric oscillator. Opt. Lett. 34(8), 1165–1167 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    A.K. Popov, S.A. Myslivets, V.M. Shalaev, Plasmonics: nonlinear optics, negative phase and transformable transparency (Invited Paper), in Plasmonics: Nanoimaging, Nanofabrication, and Their Applications V, ed. by S. Kawata, V.M. Shalaev, D.P. Tsai. Proc. of SPIE, vol. 7395, p. 73950Z-1(12) (2009) CrossRefGoogle Scholar
  13. 13.
    A.K. Popov, S.A. Myslivets, V.M. Shalaev, Coherent nonlinear optics and quantum control in negative-index metamaterials. J. Opt. A, Pure Appl. Opt. 11, 114028(13) (2009) ADSGoogle Scholar
  14. 14.
    A.K. Popov, S.A. Myslivets, Numerical simulations of negative-index nanocomposites and backward-wave photonic microdevices, in ICMS 2010: International Conference on Modeling and Simulation. Proc. of WASET, vol. 37, pp. 107–121 (2010). http://www.waset.org/journals/waset/v37/v37-16.pdf Google Scholar
  15. 15.
    A.K. Popov, T.F. George, Computational studies of tailored negative-index metamaterials and microdevices, in Computational Studies of New Materials II: From Ultrafast Processes and Nanostructures to Optoelectronics, Energy Storage and Nanomedicine, ed. by T.F. George, D. Jelski, R.R. Letfullin, G. Zhang (World Scientific, Singapore, 2011) Google Scholar
  16. 16.
    A.I. Maimistov, I.R. Gabitov, E.V. Kazantseva, Quadratic solitons in media with negative refractive index. Opt. Spectrosc. 102, 90–97 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    A.I. Maimistov, I.R. Gabitov, Nonlinear optical effects in artificial materials. Eur. Phys. J. Spec. Top. 147, 265–286 (2007) CrossRefGoogle Scholar
  18. 18.
    S.O. Elyutin, A.I. Maimistov, I.R. Gabitov, On the third harmonic generation in a medium with negative pump wave refraction. J. Exp. Theor. Phys. 111, 157–169 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    L.I. Mandelstam, Group velocity in a crystal lattice. Ž. èksp. Teor. Fiz. 15, 475–478 (1945) MathSciNetGoogle Scholar
  20. 20.
    M.I. Shalaev, S.A. Myslivets, V.V. Slabko, A.K. Popov, Negative group velocity and three-wave mixing in dielectric crystals. Opt. Lett. 36, 3861–3863 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    Y.R. Shen, N. Bloembergen, Theory of stimulated Brillouin and Raman scattering. Phys. Rev. 137, A1787–A1805 (1965) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, Amsterdam, 2008) Google Scholar
  23. 23.
    D.L. Bobroff, Coupled-modes analysis of the phonon–photon parametric backward-wave oscillator. J. Appl. Phys. 36, 1760–1769 (1965) MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    J.B. Khurgin, Mirrorless magic. Nat. Photonics 1, 446–448 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    V.S. Gorelik, Contemporary Problems of Raman Spectroscopy (Nauka Publishing Co., Moscow, 1978), pp. 28–47 (in Russian) Google Scholar
  26. 26.
    E. Anastassakis, S. Iwasa, E. Burstein, Electric-field-induced infrared absorption in diamond. Phys. Rev. Lett. 17, 1051–1054 (1966) ADSCrossRefGoogle Scholar
  27. 27.
    Y. Chen, J.D. Lee, Determining material constants in micromorphic theory through phonon dispersion relations. Int. J. Eng. Sci. 41, 871–886 (2003) CrossRefGoogle Scholar
  28. 28.
    V.M. Agranovich, Y.R. Shen, R.H. Baughman, A.A. Zakhidov, Linear and nonlinear wave propagation in negative refraction metamaterials. Phys. Rev. B 69, 165112 (2004) ADSCrossRefGoogle Scholar
  29. 29.
    V.M. Agranovich, Yu.N. Gartstein, Spatial dispersion and negative refraction of light. Phys. Uspekhi, 176, 1051–1068 (2006) (also in Physics of Negative Refraction, ed. by C.M. Krowne, Y. Zhang (Springer, 2007)) CrossRefGoogle Scholar
  30. 30.
    I. Nefedov, S. Tretyakov, Ultrabroadband electromagnetically indefinite medium formed by aligned carbon nanotubes. Phys. Rev. B 84, 113410 (2011) ADSCrossRefGoogle Scholar
  31. 31.
    P.A. Belov, A.A. Orlov, A.V. Chebykin, Yu.S. Kivshar, Spatial dispersion in layered metamaterials, in Proceedings of the International Conference on Electrodynamics of Complex Materials, for Advanced Technologies, PLASMETA’11, September 21–26, Samarkand, Uzbekistan (2011), pp. 30–31 Google Scholar
  32. 32.
    I.S. Nefedov, Electromagnetic waves propagating in a periodic array of parallel metallic carbon nanotubes. Phys. Rev. B 82, 155423(7) (2010) ADSCrossRefGoogle Scholar
  33. 33.
    I.S. Nefedov, S.A. Tretyakov, Effective medium model for two-dimensional periodic arrays of carbon nanotubes. Photonics Nanostruct. Fundam. Appl. 9, 374–380 (2011) (TaCoNa-Photonics 2010) ADSCrossRefGoogle Scholar
  34. 34.
    P.A. Belov, R. Marques, S.I. Maslovski, I.S. Nefedov, M. Silveirinha, C.R. Simovski, S.A. Tretyakov, Strong spatial dispersion in wire media in the very large wavelength limit. Phys. Rev. B 67, 113103 (2003) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexander K. Popov
    • 1
  • Mikhail I. Shalaev
    • 2
  • Sergey A. Myslivets
    • 3
  • Vitaly V. Slabko
    • 2
  • Igor S. Nefedov
    • 4
  1. 1.University of Wisconsin-Stevens PointStevens PointUSA
  2. 2.Siberian Federal UniversityKrasnoyarskRussian Federation
  3. 3.Institute of Physics of Russian Academy of SciencesKrasnoyarskRussian Federation
  4. 4.SMARAD Center of ExcellenceAalto UniversityAaltoFinland

Personalised recommendations