Advertisement

Applied Physics A

, Volume 111, Issue 4, pp 1207–1212 | Cite as

Growth of undoped and Fe doped TiO2 nanostructures and their optical and photocatalytic properties

  • S. H. MohamedEmail author
  • M. El-Hagary
  • S. Althoyaib
Article

Abstract

Undoped and Fe-doped TiO2 nanostructures have been successfully grown on Pt-coated quartz and Si (100) substrates using vapor-liquid-solid (VLS) growth method. The scanning electron microscopy (SEM) image showed that TiO2 grew in nanowires (NWs) with diameters of 200–400 nm and lengths greater than 12 μm. However, the morphology of Fe-doped TiO2 consists of chunk shaped nanoparticles (NPs). The X-ray diffraction analysis for undoped TiO2 NWs clearly showed the formation of tetragonal rutile TiO2, whereas for the Fe-doped TiO2 NPs it showed orthorhombic TiO2 phase and there are no crystalline peaks for iron or iron oxide. The refractive index and extinction coefficient values of undoped and Fe-doped TiO2 nanostructures were derived from the ellipsometric measurements. Enhanced photocatalytic activities were obtained for undoped and Fe-doped TiO2 nanostructures. The obtained results may find potential applications in optical devices and degradation of organic wastes.

Keywords

TiO2 Methylene Blue Photocatalytic Activity Undoped TiO2 Spectroscopic Ellipsometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is supported by NPST program at Qassim University under Project No. 09-ENV791-09.

References

  1. 1.
    S.V.N.T. Kuchibhatla, A.S. Karakoti, D. Bera, S. Seal, Prog. Mater. Sci. 52, 699 (2007) CrossRefGoogle Scholar
  2. 2.
    H. Takikawa, T. Matsui, T. Sakakibara, A. Bendavid, P.J. Martin, Thin Solid Films 348, 145 (1999) ADSCrossRefGoogle Scholar
  3. 3.
    L. Martinu, D. Poitras, J. Vac. Sci. Technol. A 18, 2619 (2000) ADSCrossRefGoogle Scholar
  4. 4.
    S.H. Mohamed, O. Kappertz, T.P. Leervad Pedersen, R. Drese, M. Wuttig, Phys. Status Solidi (a) 198, 224 (2003) ADSCrossRefGoogle Scholar
  5. 5.
    K. Ubonchonlakate, L. Sikong, F. Saito, Proc. Eng. 32, 656 (2012) CrossRefGoogle Scholar
  6. 6.
    S.R. Shirsath, D.V. Pinjari, P.R. Gogate, S.H. Sonawane, A.B. Pandit, Ultrason. Sonochem. 20, 277 (2013) CrossRefGoogle Scholar
  7. 7.
    I. Ganesh, P.P. Kumar, A.K. Gupta, P.S.C. Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, Proc. Appl. Ceram. 6, 21 (2012) Google Scholar
  8. 8.
    J.-C. Lee, K.-S. Park, T.-G. Kim, H.-J. Choi, Y.-M. Sung, Nanotechnology 17, 4317 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    F. Wu, X. Li, Z. Wang, H. Guo, L. Wu, X. Xiong, X. Wang, J. Alloys Compd. 509, 3711 (2011) CrossRefGoogle Scholar
  10. 10.
    S.S. Mandal, A.J. Bhattacharyya, Talanta 82, 876 (2010) CrossRefGoogle Scholar
  11. 11.
    E. Comini, G. Faglia, M. Ferroni, A. Ponzoni, A. Vomiero, G. Sberveglieri, J. Mol. Catal. A, Chem. 305, 170 (2009) CrossRefGoogle Scholar
  12. 12.
    Z. Peng, N. Zhu, X. Fu, C. Wang, Z. Fu, L. Qi, H. Miao, J. Am. Ceram. Soc. 93, 2264 (2010) CrossRefGoogle Scholar
  13. 13.
    C.-Y. Nam, D. Tham, J.E. Fischer, Mater. Res. Soc. Symp. Proc. 1058, 1058-JJ04-03 (2008) CrossRefGoogle Scholar
  14. 14.
    B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn. (Addison-Wesley, Reading, 1979), p. 102 Google Scholar
  15. 15.
    C.M. Herzinger, B. Johs, W.A. McGahan, J.A. Woollam, W. Paulson, J. Appl. Phys. 83, 3323 (1998) ADSCrossRefGoogle Scholar
  16. 16.
    R.A. Synowicki, Thin Solid Films 313–314, 394 (1998) CrossRefGoogle Scholar
  17. 17.
    S.H. Mohamed, O. Kappertz, T.P. Leervad Pedersen, R. Drese, M. Wuttig, Phys. Status Solidi (a) 198, 224 (2003) ADSCrossRefGoogle Scholar
  18. 18.
    S.H. Mohamed, J. Alloys Compd. 510, 119 (2012) CrossRefGoogle Scholar
  19. 19.
    P. Eiamchai, P. Chindaudom, A. Pokaipisit, P. Limsuwan, Curr. Appl. Phys. 9, 707 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    P. Zeman, S. Takabayashi, J. Vac. Sci. Technol. A 20, 388 (2002) ADSCrossRefGoogle Scholar
  21. 21.
    C. Wang, X. Zhang, C. Shao, Y. Zhang, J. Yang, P. Sun, X. Liu, H. Liu, Y. Liu, T. Xie, D. Wang, J. Colloid Interface Sci. 363, 157–164 (2011) CrossRefGoogle Scholar
  22. 22.
    L. Min, L. Wei-ming, Z. Lei, Z. Chun-lan, L. Hai-ling, W. Wen-jing, Trans. Nonferr. Met. Soc. China 20, 2299 (2010) CrossRefGoogle Scholar
  23. 23.
    H. Yu, J. Yu, B. Cheng, Chemosphere 66, 2050 (2007) CrossRefGoogle Scholar
  24. 24.
    Y. Pihosh, I. Turkevych, J. Ye, M. Goto, A. Kasahara, M. Kondo, M. Tosa, J. Electrochem. Soc. 156, K160 (2009) CrossRefGoogle Scholar
  25. 25.
    L. Chun-Yan, W. Jiang-Bin, W. Yi-Qian, Chin. Phys. B 21, 098102 (2012) ADSCrossRefGoogle Scholar
  26. 26.
    T. Kemmitt, N.I. Al-Salim, J. Lian, V.B. Golovko, J.-Y. Ruzicka, Curr. Appl. Phys. 13, 142 (2013) ADSCrossRefGoogle Scholar
  27. 27.
    J. Wiener, S. Shahidi, M.M. Gob, Opt. Laser Technol. 45, 147 (2013) ADSCrossRefGoogle Scholar
  28. 28.
    H.R. Pouretedal, A. Norozi, M.H. Keshavarz, A. Semnani, J. Hazard. Mater. 162, 674 (2009) CrossRefGoogle Scholar
  29. 29.
    S.H. Mohamed, J. Phys. D, Appl. Phys. 43, 035406 (2010) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Physics Department, College of ScienceQassim UniversityBuryadhKingdom of Saudi Arabia
  2. 2.Physics Department, Faculty of ScienceSohag UniversitySohagEgypt
  3. 3.Physics Department, Faculty of ScienceHelwan UniversityHelwanEgypt

Personalised recommendations