Applied Physics A

, Volume 109, Issue 4, pp 781–788 | Cite as

Exotic properties and potential applications of quantum metamaterials

  • Romain Fleury
  • Andrea AlùEmail author


We discuss here potential venues for applications and exotic features of quantum metamaterials. We explore the coupling of conventional electromagnetic metamaterials with quantum emitters and the wave properties of quantum metamaterials obtained by tailoring their effective band structure. We discuss anomalous enhancement effects in the quantum emission properties of individual and collections of small emitters in the presence of metamaterials, as well as matter-wave cloaking and anomalous tunneling phenomena for quantum mechanical waves in artificial materials with exotic band structures.


Effective Permittivity Matter Wave Quantum Emitter Exotic Property Acoustic Metamaterials 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the ONR MURI Grant No. N00014-10-1-0942 and the DTRA YIP Award No. HDTRA1-12-1-0022.


  1. 1.
    N.I. Zheludev, The road ahead for metamaterials. Science 328, 582–583 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    J. Zuloaga, E. Prodan, P. Nordlander, Quantum plasmonics: optical properties and tunability of metallic nanorods. ACS Nano 4, 5269–5276 (2010) CrossRefGoogle Scholar
  3. 3.
    J.J. Greffet, M. Laroche, F. Marquier, Impedance of a nanoantenna and a single quantum emitter. Phys. Rev. Lett. 105, 117701 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    A. Alù, M.G. Silveirinha, A. Salandrino, N. Engheta, Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys. Rev. B 75, 155410 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    M.G. Silveirinha, N. Engheta, Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials. Phys. Rev. Lett. 97, 157403 (2006) ADSCrossRefGoogle Scholar
  6. 6.
    A. Alù, M.G. Silveirinha, N. Engheta, Transmission-line analysis of ε-near-zero–filled narrow channels. Phys. Rev. E 78, 016604 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    R.W. Ziolkowski, Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys. Rev. E 70, 046608 (2004) ADSCrossRefGoogle Scholar
  8. 8.
    B. Edwards, A. Alù, M.G. Silveirinha, N. Engheta, Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys. Rev. Lett. 103, 153901 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    A. Alù, N. Engheta, Boosting molecular fluorescence with a plasmonic nanolauncher. Phys. Rev. Lett. 103, 043902 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    V.V. Cheianov, V. Fal’ko, B.L. Altshuler, The focusing of electron flow and a Veselago lens in grapheme p-n junctions. Science 315, 1252–1255 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    E. Moreno, A.I. Fernandez-Dominguez, J.I. Cirac, L. Martin-Moreno, Resonant transmission of cold atoms through subwavelength apertures. Phys. Rev. Lett. 95, 170406 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    L. Jenilek, J.D. Baena, J. Voves, R. Marques, Metamaterial inspired perfect-tunneling in semiconductors heterostructures. New J. Phys. 13, 083011 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    S. Zhang, D.A. Genov, C. Sun, X. Zhang, Cloaking of matter waves. Phys. Rev. Lett. 100, 123002 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    J.M. Luttinger, W. Kohn, Motion of electrons and holes in perturbed periodic fields. Phys. Rev. 97, 869–883 (1955) ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    L.C. Lew Yan Voon, M. Willatzen, The k.p Method, Electronic Properties of Semiconductors (Springer, New York, 2009) Google Scholar
  16. 16.
    R.H. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954) ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    F.T. Arecchi, E. Courtens, Cooperative phenomena in resonant electromagnetic propagation. Phys. Rev. A 2, 1730–1737 (1970) ADSCrossRefGoogle Scholar
  18. 18.
    N. Skribanowitz, I.P. Herman, J.C. MacGillivray, M.S. Feld, Observation of Dicke super-radiance in optically pumped HF gas. Phys. Rev. Lett. 30, 309–312 (1973) ADSCrossRefGoogle Scholar
  19. 19.
    M.G. Benedict, A.M. Ermolaev, V.A. Malyshev, I.V. Solokov, E.D. Trifonov, Super-radiance, Multiatomic Coherent Emission (Institute of Physics, Bristol, 1996) Google Scholar
  20. 20.
    D.C. Burnham, R.Y. Chiao, Coherent resonance fluorescence excited by short light pulses. Phys. Rev. 178, 2025–2035 (1969) CrossRefGoogle Scholar
  21. 21.
    A. Alù, N. Engheta, Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72, 016623 (2005) ADSCrossRefGoogle Scholar
  22. 22.
    M. Guild, A. Alù, M.R. Haberman, Cancellation of acoustic scattering from an elastic sphere. J. Acoust. Soc. Am. 129, 1355–1365 (2011) CrossRefGoogle Scholar
  23. 23.
    D. Rainwater, A. Kerkhoff, K. Melin, J.C. Soric, G. Moreno, A. Alù, Experimental verification of three-dimensional plasmonic cloaking in free space. New J. Phys. 14, 013054 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    A. Bohm, Quantum Mechanics, Foundations and Applications, 3rd edn. (Springer, New York, 1994) Google Scholar
  25. 25.
    A. Alù, N. Engheta, Light squeezing through arbitrarily shaped plasmonic channels and sharp bends. Phys. Rev. B 78, 035440 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    A. Alù, N. Engheta, Dielectric sensing in ε-near zero narrow waveguide channels. Phys. Rev. B 78, 045102 (2008) ADSCrossRefGoogle Scholar
  27. 27.
    C. Argyropoulos, P.Y. Chen, G. D’Aguanno, N. Engheta, A. Alù, Boosting optical non-linearities in epsilon-near-zero plasmonic channels. Phys. Rev. B 85, 045129 (2012) ADSCrossRefGoogle Scholar
  28. 28.
    A. Alù, G. D’aguanno, N. Mattiucci, M.J. Bloemer, Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings. Phys. Rev. Lett. 106, 123902 (2011) ADSCrossRefGoogle Scholar
  29. 29.
    A.N. Khonder, M. Rezwan, A.F.M. Anwar, Transmission line analogy of resonance tunneling phenomena: the generalized impedance concept. J. Appl. Phys. 63, 5191–5193 (1988) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringThe University of Texas at AustinAustinUSA

Personalised recommendations