Advertisement

Applied Physics A

, Volume 111, Issue 3, pp 975–981 | Cite as

Electron-beam deposition of vanadium dioxide thin films

  • R. E. MarvelEmail author
  • K. Appavoo
  • B. K. Choi
  • J. Nag
  • R. F. HaglundJr.
Article

Abstract

Developing a reliable and efficient fabrication method for phase-transition thin-film technology is critical for electronic and photonic applications. We demonstrate a novel method for fabricating polycrystalline, switchable vanadium dioxide thin films on glass and silicon substrates and show that the optical switching contrast is not strongly affected by post-processing annealing times. The method relies on electron-beam evaporation of a nominally stoichiometric powder, followed by fast annealing. As a result of the short annealing procedure we demonstrate that films deposited on silicon substrates appear to be smoother, in comparison to pulsed laser deposition and sputtering. However, optical performance of e-beam evaporated film on silicon is affected by annealing time, in contrast to glass.

Keywords

Annealing Time Diffuse Scattering Powder Precursor Optical Performance Vanadium Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

K.A. was supported by a research assistantship provided by the Defense Threat Reduction Agency (HDTRA1-10-1-0016). R.E.M. was supported by the Office of Science, U.S. Department of Energy (DE-FG02-01ER45916). Portions of this work were performed at the Vanderbilt Institute of Nanoscale Science and Engineering, using facilities renovated under NSF ARI-R2 DMR-0963361. We thank Professors Jim Wittig and Charles Lukehart for their helpful discussions related to the analysis of this work.

References

  1. 1.
    F. Morin, Phys. Rev. Lett. 3, 34–36 (1959) ADSCrossRefGoogle Scholar
  2. 2.
    Z. Yang, C. Ko, S. Ramanathan, Annu. Rev. Mater. Res. 41, 337–367 (2011) ADSCrossRefGoogle Scholar
  3. 3.
    A. Pashkin, C. Kubler, E. Ehrke, R. Lopez, A. Halabica, R.F. Haglund Jr., R. Hüber, A. Leitenstorfer, Phys. Rev. B 83, 195120 (2011) ADSCrossRefGoogle Scholar
  4. 4.
    M.M. Qazilbash, A. Tripathi, A.A. Schafgans, B.J. Kim, H.T. Kim, Z. Cai, M.V. Holt, J.M. Maser, F. Keilmann, O.G. Shpyrko, D.N. Basov, Phys. Rev. B 83, 165108 (2011) ADSCrossRefGoogle Scholar
  5. 5.
    M. Hada, K. Okimura, J. Matsuo, Phys. Rev. B 82, 153401 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    G. Anderson, Acta Chem. Scand. 10, 623–627 (1956) CrossRefGoogle Scholar
  7. 7.
    S. Westman, Acta Chem. Scand. 15, 217–221 (1961) CrossRefGoogle Scholar
  8. 8.
    R.R. Roach, I. Balberg, Solid State Commun. 9, 551–555 (1971) ADSCrossRefGoogle Scholar
  9. 9.
    C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, R.F. Haglund Jr., A. Leitenstorfer, Phys. Rev. Lett. 99, 116401 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    A. Cavalleri, Cs. Toth, C.W. Siders, J.A. Squier, Phys. Rev. Lett. 87, 237401 (2001) ADSCrossRefGoogle Scholar
  11. 11.
    H.T. Kim, B.G. Chae, D.H. Youn, G. Kim, K.Y. Kang, S.J. Lee, K. Kim, Y.S. Lim, Appl. Phys. Lett. 86, 242101 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    A. Klausch, H. Althues, T. Freudenberg, C.G. Granqvist, Thin Solid Films 10, 3823–3828 (2012) Google Scholar
  13. 13.
    K. Appavoo, R.F. Haglund, Nano Lett. 11, 1025–1031 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    H.T. Kim, Y.W. Lee, B.J. Kim, B.G. Chae, S.J. Yun, Phys. Rev. Lett. 97, 266401 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    A. Cavalleri, T. Dekorsy, H.H.W. Chong, J.C. Kieffer, R.W. Schoenlein, Phys. Rev. B 70, 161102 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    E.N. Fuls, D.H. Hensler, A.R. Ross, Appl. Phys. Lett. 10, 199–205 (1967) ADSCrossRefGoogle Scholar
  17. 17.
    M. Borek, F. Qlan, V. Nagabushnam, R.K. Singh, Appl. Phys. Lett. 63, 24–29 (1993) CrossRefGoogle Scholar
  18. 18.
    B.G. Chae, H.T. Kim, S.J. Yun, B.J. Kim, Y.W. Lee, D.H. Youn, K.Y. Kang, Solid State Lett. 9, C12–C14 (2006) CrossRefGoogle Scholar
  19. 19.
    S. Koide, H. Takei, J. Phys. Soc. Jpn. 22, 946–947 (1967) ADSCrossRefGoogle Scholar
  20. 20.
    U. Qureshi, T.D. Manning, I.P. Parkin, J. Mater. Chem. 14, 1190–1194 (2004) CrossRefGoogle Scholar
  21. 21.
    Y. Gao, S. Wang, H. Luo, L. Dai, C. Cao, Y. Liu, Z. Chen, M. Kanehira, Energy Environ. Sci. 5, 6104–6110 (2012) CrossRefGoogle Scholar
  22. 22.
    Z. Zhang, Y. Gao, H. Luo, L. Kang, J. Du, M. Kanehira, Y. Zhang, Z.L. Wang, Energy Environ. Sci. 4, 4290 (2011) CrossRefGoogle Scholar
  23. 23.
    Y. Gao, S. Wang, L. Kang, Z. Chen, J. Du, X. Liu, H. Luo, M. Kanehire, Energy Environ. Sci. 5, 8234–8237 (2012) CrossRefGoogle Scholar
  24. 24.
    Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, C. Cao, Nano Energy 1, 221–246 (2012) CrossRefGoogle Scholar
  25. 25.
    Y. Gao, C. Cao, L. Dai, H. Luo, M. Kanehira, Y. Ding, Z.L. Wang, Energy Environ. Sci. 5, 8708–8715 (2012) CrossRefGoogle Scholar
  26. 26.
    K. Nagashima, T. Yanagida, H. Tanaka, T. Kawai, J. Appl. Phys. 100(6), 063714 (2006) ADSCrossRefGoogle Scholar
  27. 27.
    Z.P. Wu, P.A. Fang, J. Inorg. Mater. 14(5), 823–827 (1999) Google Scholar
  28. 28.
    A. Gupta, R. Aggarwal, P. Gupta, T. Dutte, R.J. Narayan, J. Narayan, Appl. Phys. Lett. 95, 111915 (2009) ADSCrossRefGoogle Scholar
  29. 29.
    J.Y. Suh, R. Lopez, L.C. Feldman, R.F. Haglund Jr., J. Appl. Phys. 96, 1209–1213 (2004) ADSCrossRefGoogle Scholar
  30. 30.
    G.A. Nyberg, R.A. Buhrman, J. Vac. Sci. Technol. A 2, 301–302 (1984) ADSCrossRefGoogle Scholar
  31. 31.
    M.H. Lee, M.G. Kim, Thin Solid Films 286, 219–222 (1996) ADSCrossRefGoogle Scholar
  32. 32.
    A. Subrahmanyam, Y. Bharat Kumar Reddy, C.L. Negendra, J. Phys. D, Appl. Phys. 41, 195108 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    J. Leroy, A. Bessaudou, F. Cosset, A. Crunteanu, Thin Solid Films 520, 4823–4825 (2012) CrossRefGoogle Scholar
  34. 34.
    J.M. Gregg, R.M. Bowman, Appl. Phys. Lett. 71, 3649–3651 (1997) ADSCrossRefGoogle Scholar
  35. 35.
    S. Lysenko, V. Vikhnim, F. Fernandez, A. Rua, H. Liu, Phys. Rev. B 75, 075109 (2007) ADSCrossRefGoogle Scholar
  36. 36.
    E. Chain, Appl. Opt. 30, 2782–2787 (1991) ADSCrossRefGoogle Scholar
  37. 37.
    K. Appavoo, D.Y. Lei, Y. Sonnefraud, B. Wang, S.T. Pantelides, S.A. Maier, R.F. Haglund Jr., Nanoletters 12, 780–786 (2012) ADSCrossRefGoogle Scholar
  38. 38.
    H.W. Verleur, A.S. Barker, C.N. Berglund, Phys. Rev. 172, 788–798 (1968) ADSCrossRefGoogle Scholar
  39. 39.
    G. Nihoul, C.H. Leroux, V. Madigou, J. Durak, Solid State Ion. 117, 105–112 (1999) CrossRefGoogle Scholar
  40. 40.
    M. Gurvitch, S. Luryi, A. Polyakov, A. Shabalov, M. Dudley, G. Wang, S. Ge, V. Yakovlev, J. Appl. Phys. 102, 033504 (2007) ADSCrossRefGoogle Scholar
  41. 41.
    K. Okimura, N. Kubo, Thin Solid Films 515, 4992–4995 (2007) ADSCrossRefGoogle Scholar
  42. 42.
    J.D. Ryckman, V. Diez-Blanco, J. Nag, R.E. Marvel, B.K. Choi, R.F. Haglund Jr., S.M. Weiss, Opt. Express 20(12), 13215 (2012) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • R. E. Marvel
    • 1
    Email author
  • K. Appavoo
    • 1
  • B. K. Choi
    • 3
  • J. Nag
    • 4
  • R. F. HaglundJr.
    • 1
    • 2
    • 4
  1. 1.Interdisciplinary Materials Science ProgramVanderbilt UniversityNashvilleUSA
  2. 2.Institute for Nanoscale Science and EngineeringVanderbilt UniversityNashvilleUSA
  3. 3.Department of Electrical Engineering and Computer ScienceVanderbilt UniversityNashvilleUSA
  4. 4.Department of Physics and AstronomyVanderbilt UniversityNashvilleUSA

Personalised recommendations