Advertisement

Applied Physics A

, Volume 111, Issue 3, pp 943–950 | Cite as

Ion implanted dielectric elastomer circuits

  • Benjamin M. O’BrienEmail author
  • Samuel Rosset
  • Iain A. Anderson
  • Herbert R. Shea
Article

Abstract

Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles.

As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.

Keywords

PDMS Sacrificial Layer Dielectric Elastomer Artificial Muscle NAND Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was partially funded by the Royal Society of New Zealand via B.M. O’Brien’s Rutherford Foundation Postdoctoral Fellowship, the Swiss National Science Foundation grant 200020-130453, the Indo Swiss Joint Research Programme (ISJRP) and the Auckland Bioengineering Institute. The authors would like to thank L. Maffli, S. Akbari, P. Rinne, M. Poliero, V. Perret, P. Rosset, S. Pilkington, and M. O’Brien.

References

  1. 1.
    D. Trivedi, C.D. Rahn, W.M. Kier, I.D. Walker, Soft robotics: biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 5(3), 99–117 (2008) CrossRefGoogle Scholar
  2. 2.
    R.E. Pelrine, R.D. Kornbluh, Q. Pei, J.P. Joseph, High-speed electrically actuated elastomers with strain greater than 100 %. Science 287, 836–839 (2000) ADSCrossRefGoogle Scholar
  3. 3.
    I.A. Anderson, T.A. Gisby, T.G. McKay, B.M. O’Brien, E.P. Calius, Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J. Appl. Phys. 112(4), 041101 (2012) ADSCrossRefGoogle Scholar
  4. 4.
    R.E. Pelrine, R.D. Kornbluh, Q. Pei, S. Stanford, S. Oh, J. Eckerle, R. Full, M. Rosenthal, K. Meijer, Dielectric elastomer artificial muscle actuators: toward biomimetic motion. Proc. SPIE 4695 (2002) Google Scholar
  5. 5.
    K. Jung, J.C. Koo, J.-d. Nam, Y.K. Lee, H.R. Choi, Artificial annelid robot driven by soft actuators. Bioinspir. Biomim. 2, S42–S49 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    B. O’Brien, T. Gisby, S. Xie, E. Calius, I. Anderson, FEA of dielectric elastomer minimum energy structures as a tool for biomimetic design. Proc. SPIE 7287 (2009) Google Scholar
  7. 7.
    C. Jordi, S. Michel, E. Fink, Fish-like propulsion of an airship with planar membrane dielectric elastomer actuators. Bioinspir. Biomim. 5(2) (2010) Google Scholar
  8. 8.
    Q. Pei, M.A. Rosenthal, R. Pelrine, S. Stanford, R.D. Kornbluh, Multifunctional electroelastomer roll actuators and their application for biomimetic walking robots. Proc. SPIE 5051 (2003) Google Scholar
  9. 9.
    J. Rossiter, P. Walters, B. Stoimenov, Printing 3D dielectric elastomer actuators for soft robotics. Proc. SPIE 7287 (2009) Google Scholar
  10. 10.
    B.A. Trimmer, New challenges in biorobotics: incorporating soft tissue into control systems. Appl. Bionics Biomech. 5(3), 119–126 (2008) CrossRefGoogle Scholar
  11. 11.
    G. Sumbre, Y. Gutfreund, G. Fiorito, T. Flash, B. Hochner, Control of octopus arm extension by a peripheral motor program. Science 293(5536), 1845–1848 (2001) ADSCrossRefGoogle Scholar
  12. 12.
    Y. Yekutieli, G. Sumbre, T. Flash, B. Hochner, How to move with no rigid skeleton? Biologist 49(6), 250–254 (2002) Google Scholar
  13. 13.
    T.A. Gisby, S. Xie, E.P. Calius, I.A. Anderson, Integrated sensing and actuation of muscle-like actuators. Proc. SPIE 7287 (2009) Google Scholar
  14. 14.
    M. Migita, E. Mizukami, Y.P. Gunji, Flexibility in starfish behavior by multi-layered mechanism of self-organization. Biosystems 82(2), 107–115 (2005) CrossRefGoogle Scholar
  15. 15.
    K. Agata, T. Inoue, Survey of the differences between regenerative and non-regenerative animals. Dev. Growth Differ. 54(2), 143–152 (2012) CrossRefGoogle Scholar
  16. 16.
    T. Rubilar, C. Pastor, E. Díaz de Vivar, Timing of fission in the starfish Allostichaster capensis (Echinodermata: Asteroidea) in laboratory. Rev. Biol. Trop. 53(Suppl 3), 299–303 (2005) Google Scholar
  17. 17.
    J.A. Rogers, Y. Huang, A curvy, stretchy future for electronics. Proc. Natl. Acad. Sci. USA 106(27), 10875–10876 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    D.H. Kim, N. Lu, R. Ma, Y.S. Kim, R.H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T.I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.J. Chung, H. Keum, M. McCormick, P. Liu, Y.W. Zhang, F.G. Omenetto, Y. Huang, T. Coleman, J.A. Rogers, Epidermal electronics. Science 333(6044), 838–843 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    A. Jong-Hyun, J. Jung Ho, Stretchable electronics: materials, architectures and integrations. J. Phys. D, Appl. Phys. 45(10), 103001 (2012) ADSCrossRefGoogle Scholar
  20. 20.
    B.M. O’Brien, E.P. Calius, T. Inamura, S.Q. Xie, I.A. Anderson, Dielectric elastomer switches for smart artificial muscles. Appl. Phys. A, Mater. Sci. Process. 100(2), 385–389 (2010) ADSCrossRefGoogle Scholar
  21. 21.
    L. Chen, G. Chen, L. Lu, Piezoresistive behavior study on finger-sensing silicone rubber/graphite nanosheet nanocomposites. Adv. Funct. Mater. 17(6), 898–904 (2007) CrossRefGoogle Scholar
  22. 22.
    G. Canavese, M. Lombardi, S. Stassi, C.F. Pirri, Comprehensive characterization of large piezoresistive variation of Ni-PDMS composites. Appl. Mech. Mater. 110–116, 1336–1344 (2012) Google Scholar
  23. 23.
    R. Strümpler, J. Glatz-Reichenbach, Conducting polymer composites. J. Electroceram. 3(4), 329–346 (1999) CrossRefGoogle Scholar
  24. 24.
    B.M. O’Brien, T.G. McKay, S.Q. Xie, E.P. Calius, I.A. Anderson, Dielectric elastomer memory. Proc. SPIE 7976 (2011) Google Scholar
  25. 25.
    T.G. McKay, B.M. O’Brien, E.P. Calius, I.A. Anderson, Soft generators using dielectric elastomers. Appl. Phys. Lett. 98, 142903 (2011) ADSCrossRefGoogle Scholar
  26. 26.
    B.M. O’Brien, T.G. McKay, T.A. Gisby, I.A. Anderson, Rotating turkeys and self-commutating artificial muscle rotary motors. Appl. Phys. Lett. 100, 074108 (2012) ADSCrossRefGoogle Scholar
  27. 27.
    B.M. O’Brien, I.A. Anderson, An artificial muscle ring oscillator. IEEE/ASME Trans. Mechatron. 17(1), 197–200 (2012) CrossRefGoogle Scholar
  28. 28.
    M. Niklaus, H.R. Shea, Electrical conductivity and Young’s modulus of flexible nanocomposites made by metal-ion implantation of polydimethylsiloxane: the relationship between nanostructure and macroscopic properties. Acta Mater. 59(2), 830–840 (2011) CrossRefGoogle Scholar
  29. 29.
    S. Rosset, M. Niklaus, P. Dubois, H.R. Shea, Large-stroke dielectric elastomer actuators with ion-implanted electrodes. J. Microelectromech. Syst. 18(6), 1300–1308 (2009) CrossRefGoogle Scholar
  30. 30.
    S. Rosset, M. Niklaus, P. Dubois, H.R. Shea, Metal ion implantation for the fabrication of stretchable electrodes on elastomers. Adv. Funct. Mater. 19(3), 470–478 (2009) CrossRefGoogle Scholar
  31. 31.
    P. Dubois, S. Rosset, S. Koster, J. Stauffer, S. Mikhailov, M. Dadras, N.-F. deRooij, H. Shea, Microactuators based on ion implanted dielectric electroactive polymer (EAP) membranes. Sensors Actuators A 130–131, 147–154 (2006) CrossRefGoogle Scholar
  32. 32.
    S. Akbari, H.R. Shea, Microfabrication and characterization of an array of dielectric elastomer actuators generating uniaxial strain to stretch individual cells. J. Micromech. Microeng. 22(4) (2012) Google Scholar
  33. 33.
    R.E. Pelrine, R.D. Kornbluh, J.P. Joseph, R. Heydt, Q. Pei, S. Chiba, High-field deformation of elastomeric dielectrics for actuators. Mater. Sci. Eng. C 11, 89–100 (2000) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Benjamin M. O’Brien
    • 1
    Email author
  • Samuel Rosset
    • 2
  • Iain A. Anderson
    • 1
    • 3
  • Herbert R. Shea
    • 2
  1. 1.Biomimetics Lab, Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
  2. 2.Microsystems for Space Technologies LabÉcole Polytechnique Fédérale de LausanneNeuchâtelSwitzerland
  3. 3.School of Engineering Science, Faculty of EngineeringUniversity of AucklandAucklandNew Zealand

Personalised recommendations