Applied Physics A

, Volume 111, Issue 3, pp 923–927 | Cite as

Magneto-electronic properties and spin-resolved I–V curves of a Co/GeSe heterojunction diode: an ab initio study

  • Leonardo Makinistian
  • Eduardo A. Albanesi


We present ab initio calculations of magnetoelectronic and transport properties of the interface of hcp Cobalt (001) and the intrinsic narrow-gap semiconductor germanium selenide (GeSe). Using a norm-conserving pseudopotentials scheme within DFT, we first model the interface with a supercell approach and focus on the spin-resolved densities of states and the magnetic moment (spin and orbital components) at the different atomic layers that form the device. We also report a series of cuts (perpendicular to the plane of the heterojunction) of the electronic and spin densities showing a slight magnetization of the first layers of the semiconductor. Finally, we model the device with a different scheme: using semiinfinite electrodes connected to the heterojunction. These latter calculations are based upon a nonequilibrium Green’s function approach that allows us to explore the spin-resolved electronic transport under a bias voltage (spin-resolved I–V curves), revealing features of potential applicability in spintronics.


GeSe PAOs Magnetic Tunnel Junction Heterojunction Diode Current Spin Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge financial support from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Universidad Nacional de Entre Ríos (UNER), Argentina; and the work of the developers of Xcrysden [31] and VESTA [32] codes, utilized in this work.


  1. 1.
    M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988) ADSCrossRefGoogle Scholar
  2. 2.
    R.Y. Yuan, R.Z. Wang, K. Xue, J.S. Wei, X.M. Song, B. Wang, H. Yan, Phys. Rev. B 74, 024417 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    P. Yordanov, A.V. Boris, J.W. Freeland, J.J. Kavich, J. Chakhalian, H.N. Lee, B. Keimer, Phys. Rev. B 84, 045108 (2011) ADSCrossRefGoogle Scholar
  4. 4.
    A.G. Petukhov, D.O. Demchenko, A.N. Chantis, Phys. Rev. B 68, 125332 (2003) ADSCrossRefGoogle Scholar
  5. 5.
    H. Oka, K. Tao, S. Wedekind, G. Rodary, V.S. Stepanyuk, D. Sander, J. Kirschner, Phys. Rev. Lett. 107, 187201 (2011) ADSCrossRefGoogle Scholar
  6. 6.
    A.N. Useinov, J. Kosel, N.K. Useinov, L.R. Tagirov, Phys. Rev. B 84, 085424 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    R. Yamada, M. Noguchi, H. Tada, Appl. Phys. Lett. 98, 053110 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    I. Žutic, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004) ADSCrossRefGoogle Scholar
  9. 9.
    J.A.C. Bland, B. Heinrich (eds.), Ultrathin Magnetic Structures IV (Springer, Berlin, 2003) Google Scholar
  10. 10.
    G. Sun, R.A. Soref, H.H. Cheng, J. Appl. Phys. 108, 033107 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    K. Miyata, D.L. Dreifus, K. Kobashi, Appl. Phys. Lett. 60(4), 480 (1992) ADSCrossRefGoogle Scholar
  12. 12.
    Y.-F. Qin, S.-S. Yan, S.-S. Kang, S.-Q. Xiao, Q. Li, Z.-Q. Dai, T.-T. Shen, Y.-Y. Dai, G.-L. Liu, Y.-X. Chen, L.-M. Mei, Z. Zhang, Chin. Phys. Lett. 28(10), 107501 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    Y.F. Tian, J.X. Deng, S.S. Yan, Y.Y. Dai, M.W. Zhao, Y.X. Chen, G.L. Liu, L.M. Mei, Z.Y. Liu, J.R. Sun, J. Appl. Phys. 107, 024514 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    B. Stärk, P. Krüger, J. Pollmann, Phys. Rev. B 81, 035321 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    T.T. Ong, A.M. Black-Schaffer, W. Shen, B.A. Jones, Phys. Rev. B 82, 054429 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    T. Ozaki, K. Nishio, H. Kino, Phys. Rev. B 81, 035116 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    T. Ozaki, Phys. Rev. B 67, 155108 (2003) ADSCrossRefGoogle Scholar
  18. 18.
    T. Ozaki, H. Kino, Phys. Rev. B 69, 195113 (2004) ADSCrossRefGoogle Scholar
  19. 19.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  20. 20.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997) ADSCrossRefGoogle Scholar
  21. 21.
    J.P. Perdew, S. Kurth, A. Zupan, P. Blaha, Erratum: Accurate density functional with correct formal properties: a step beyond the generalized gradient approximation. Phys. Rev. Lett. 82, 5179 (1999). [Phys. Rev. Lett. 82, 2544 (1999)] ADSCrossRefGoogle Scholar
  22. 22.
    J. Chen, X. Wu, A. Selloni, Phys. Rev. B 83, 245204 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    A.B. Shick, O.N. Mryasov, Phys. Rev. B 67, 172407 (2003) ADSCrossRefGoogle Scholar
  24. 24.
    A. Onodera, I. Sakamoto, Y. Fujii, N. Môri, S. Sugai, Phys. Rev. B 56(13), 7935 (1997) ADSCrossRefGoogle Scholar
  25. 25.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    L. Hongxia, Z. Heming, Z. Zhiyong, J. Semicond. 30(5), 052002 (2009) ADSCrossRefGoogle Scholar
  27. 27.
    K. Nishio, T. Ozaki, T. Morishita, M. Mikami, Phys. Rev. B 81, 115444 (2010) ADSCrossRefGoogle Scholar
  28. 28.
    T. Ozaki, K. Nishio, H. Weng, H. Kino, Phys. Rev. B 81, 075422 (2010) ADSCrossRefGoogle Scholar
  29. 29.
    H. Jippo, M. Ohfuchi, C. Kaneta, Phys. Rev. B 84, 075467 (2011) ADSCrossRefGoogle Scholar
  30. 30.
    M. Ohfuchi, T. Ozaki, C. Kaneta, Appl. Phys. Express 4, 095101 (2011) ADSCrossRefGoogle Scholar
  31. 31.
    A. Kokalj, Comput. Mater. Sci. 28, 155 (2003). Code available from CrossRefGoogle Scholar
  32. 32.
    K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.INTEC-CONICETSanta FeArgentina
  2. 2.Facultad de IngenieríaUniversidad Nacional de Entre RíosOro VerdeArgentina

Personalised recommendations