Advertisement

Applied Physics A

, Volume 111, Issue 2, pp 665–669 | Cite as

On the magnetic compensation of magnesium doped Ni-Cr ferrites

  • A. RaisEmail author
  • A. Addou
  • M. Ameri
  • N. Bouhadouza
  • A. Merine
Article

Abstract

Mg-substituted ferrites NiMg x Fe1.1−(2/3)x Cr0.9O4 (0≤x≤0.4) were studied using X-ray diffraction, Mössbauer spectroscopy, and magnetic measurements. X-ray diffraction patterns show that all samples have cubic spinel structure. The temperature-dependent magnetic measurements revealed that the compensation point T K of NiFe1.1Cr0.9O4 starts to approach the Curie temperature T C as Mg2+ substitution of Fe3+ increases, until the magnetic compensation disappears at composition x=0.4. The magnetization data at all concentrations are discussed in the light of Néel’s molecular field model given the cations distribution obtained using the Mössbauer spectra analysis.

Keywords

Ferrite Magnesium Content Cation Distribution Compensation Temperature Nickel Ferrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L. Neel, Ann. Phys. 3, 137 (1948) Google Scholar
  2. 2.
    E.W. Gorter, J.A. Schulkes, Phys. Rev. 89, 487–488 (1953) ADSCrossRefGoogle Scholar
  3. 3.
    S. Ohkoshi, Y. Abe, A. Fujishima, K.H. Hashimoto, Phys. Rev. Lett. 8(2), 1285 (1999) ADSCrossRefGoogle Scholar
  4. 4.
    T.S. McGuire, S.W. Greenwald, Sol. St. Phys. Electr. Tel. 3(1), 50 (1960) Google Scholar
  5. 5.
    M.V. Kuznetsov, Q.A. Pankhurst, I.P. Parkin, J. Phys. D, Appl. Phys. 31, 2886 (1998) ADSCrossRefGoogle Scholar
  6. 6.
    A. Rais, A.M. Gismelseed, I.A. Al-Omari, Phys. Status Solidi (b) 242, 1497–1503 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    S. Miyahara, T. Tsushima, J. Phys. Soc. Jpn. 13, 758 (1958) ADSCrossRefGoogle Scholar
  8. 8.
    M.A. Amer, A. Tawfik, A.G. Mostafa, A.F. El-Shora, S.M. Zaki, J. Magn. Magn. Mater. 323, 1445–1452 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    K.A. Mohammed, A.D. Al-Rawas, A.M. Gismelseed, A. Sellai, H.M. Widatallah, A. Yousif, M.E. Elzain, M. Shongwe, Physica B 407, 795–804 (2012) ADSCrossRefGoogle Scholar
  10. 10.
    S.H. Lee, S.J. Yoon, G.J. Lee, H.S. Kim, C.H. Yo, K. Ahn, D.H. Lee, K.H. Kim, Mater. Chem. Phys. 61, 147–152 (1999) CrossRefGoogle Scholar
  11. 11.
    G.A. Fatseas, J.L. Dorman, H. Blanchard, J. Phys. 12, 787 (1976) Google Scholar
  12. 12.
    Y.L. Chen, B.B. Xu, J.G. Chen, Hyperfine Interact. 70, 1029 (1976) ADSCrossRefGoogle Scholar
  13. 13.
    T.R. McGuire, S.W. Greenwald, Sol. St. Phys. Electr. Tel. 58, 515 (1970) Google Scholar
  14. 14.
    K.P. Belov, Phys. Usp. 39, 623 (1996) ADSCrossRefGoogle Scholar
  15. 15.
    D. Jiles, Magnetism and Magnetic Materials (Chapman and Hall, New York, 1990) Google Scholar
  16. 16.
    F.J. Dyson, Phys. Rev. 102, 1230 (1956) MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. Rais
    • 1
    Email author
  • A. Addou
    • 2
  • M. Ameri
    • 1
  • N. Bouhadouza
    • 1
  • A. Merine
    • 1
  1. 1.Département de Physique, Faculté des SciencesUniversité Djilali LiabesSidi Bel AbbesAlgeria
  2. 2.Laboratoire STEVA, Département de ChimieUniversité de MostaganemMostaganemAlgeria

Personalised recommendations