Advertisement

Applied Physics A

, Volume 110, Issue 2, pp 413–422 | Cite as

Electrical properties, structure, and surface morphology of poly(p-xylylene)–silver nanocomposites synthesized by low-temperature vapor deposition polymerization

  • Dmitry R. StreltsovEmail author
  • Karen A. Mailyan
  • Alexey V. Gusev
  • Ilya A. Ryzhikov
  • Natalia A. Erina
  • Chanmin Su
  • Andrey V. Pebalk
  • Sergei A. Ozerin
  • Sergei N. Chvalun
Article

Abstract

The crystalline structure, surface morphology, electrical, and optical properties of thin films of nanocomposites consisting of silver nanoparticles embedded in poly(p-xylylene) matrix prepared by low-temperature vapor deposition polymerization were studied. Depending on the filler content, the average size of silver nanoparticles varied from 2 to 5 nm for nanocomposites with 2 and 12 vol.% of silver, correspondingly. The optical adsorption in the visible region due to surface plasmon resonance also exhibited a clear correlation from silver content, revealing a red shift of the adsorption peak with the increase of the metal concentration. The temperature dependences of the dc resistance of pure p-xylylene condensate and p-xylylene–silver cocondensates during polymerization as well as temperature dependences of the formed poly(p-xylylene)–silver nanocomposites were examined. The observed variation of the temperature dependences of electrical resistance as a function of silver concentration are attributed to different conduction mechanisms and correlated with the structure of the composites. The wide-angle X-ray scattering and AFM measurements consistently show a strong effect of silver content on the nanocomposite structure. The evolution of the size of silver nanoparticles by thermal annealing was demonstrated.

Keywords

Silver Nanoparticles Electrical Behavior Silver Content Silver Concentration Nanomechanical Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Council of the President of the Russian Federation for support of young scientists (Grant No. MK-445.2011.3), the Russian Foundation for Basic Research (Grant No. 12-03-00679), and GK. No. 16.513.12.3020. The authors would like to thank Prof. Dmitri Ivanov and Dr. Vitaliy Shevchenko for their valuable comments and helpful discussions. Dmitry Streltsov would like to thank Bruker-Nano, Inc. for useful training and an opportunity to conduct AFM experiments on the company’s equipment.

References

  1. 1.
    A. Biswas, O.C. Aktas, U. Schuemann, U. Saeed, V. Zaporojtchenko, F. Faupel, T. Strunskus, Appl. Phys. Lett. 84, 2655 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    R.J. Tseng, J. Huang, J. Ouyang, R.B. Karner, Y. Yang, Nano Lett. 5, 1077 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    J. Ouyang, C.-W. Chu, C.R. Szmanda, L. Ma, Y. Yang, Nat. Mater. 3, 918 (2004) ADSCrossRefGoogle Scholar
  4. 4.
    A.P. Alivisatos, Science 271, 933 (1996) ADSCrossRefGoogle Scholar
  5. 5.
    C.F. Bohren, D.R. Huffman, Adsorption and Scattering of Light by Small Particles (Wiley, New York, 2008), p. 544 Google Scholar
  6. 6.
    U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 2010), p. 552 Google Scholar
  7. 7.
    T.A. Fulton, G.J. Dolan, Phys. Rev. Lett. 59, 109 (1987) ADSCrossRefGoogle Scholar
  8. 8.
    E. Grigoriev, S. Zavyalov, S. Chvalun, Nanotechnol. Russ. 1, 58 (2006) Google Scholar
  9. 9.
    L. Valentini, J. Biagiotti, J.M. Kenny, S. Santucci, J. Appl. Polym. Sci. 87, 708 (2003) CrossRefGoogle Scholar
  10. 10.
    D.W. Chae, S.M. Hong, J. Polym. Sci., Part B, Polym. Phys. 48, 2379 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    Y.P. Mamunya, V.V. Davydenko, P. Pissis, E.V. Levedev, Eur. Polym. J. 38, 1887 (2002) CrossRefGoogle Scholar
  12. 12.
    G.N. Gerasimov, V.A. Sochilin, S.N. Chvalun, L.V. Volkova, I.Y. Kardash, Macromol. Chem. Phys. 197, 1387 (1996) CrossRefGoogle Scholar
  13. 13.
    W.F. Gorham, J. Polym. Sci., Part A, Gen. Pap. 4, 3027 (1966) CrossRefGoogle Scholar
  14. 14.
    W.F. Beach, C. Lee, D.R. Basset, T.M. Austin, R. Olson, Encyclopedia of Polymer Science and Engineering, vol. 17 (Wiley, New York, 1989) p. 990 Google Scholar
  15. 15.
    M.E. Alf, A. Asatekin, M.C. Barr, S.H. Baxamusa, H. Chelawat, G. Ozaydin-Ince, C.D. Petruczok, R. Sreenivasan, W.E. Tenhaeff, N.J. Trujillo, S. Vaddiraju, J. Xu, K.K. Gleason, Adv. Mater. 22, 1993 (2010) CrossRefGoogle Scholar
  16. 16.
    M. Gazicki, G. Surendran, W. James, H. Yasuda, J. Polym. Sci. 24, 215 (1986) CrossRefGoogle Scholar
  17. 17.
    S. Kubo, B. Wunderlich, J. Polym. Sci., Part A, Gen. Pap. 10, 1949 (1972) CrossRefGoogle Scholar
  18. 18.
    W.F. Beach, Macromolecules 11, 72 (1978) ADSCrossRefGoogle Scholar
  19. 19.
    T. Takagi, Pure Appl. Chem. 60, 781 (1988) CrossRefGoogle Scholar
  20. 20.
    B. Pittenger, N. Erina, C. Su, Application Note AN128. Veeco Instruments Inc. (2010) Google Scholar
  21. 21.
    D. Kirkpatrick, L. Judovits, B. Wunderlich, J. Polym. Sci., Part A, Gen. Pap. 24, 45 (1986) Google Scholar
  22. 22.
    A. Kahouli, F. Jomni, A. Sylvestre, B. Yangui, J. Legrand, J. Phys. D, Appl. Phys. 44, 505302 (2011) CrossRefGoogle Scholar
  23. 23.
    A. Kahouli, A. Sylvestre, F. Jomni, B. Yangui, J. Legrand, J. Phys. Chem. A 116, 1051 (2012) CrossRefGoogle Scholar
  24. 24.
    B. Abeles, P. Sheng, M. Coutts, Y. Arie, Adv. Phys. 24, 407 (1975) ADSCrossRefGoogle Scholar
  25. 25.
    I.S. Beloborodov, A.V. Lopatin, V.M. Vinokur, K.B. Efetov, Rev. Mod. Phys. 79, 469 (2007) ADSCrossRefGoogle Scholar
  26. 26.
    H. Takele, S. Jebril, T. Strunskusm, V. Zaporojchenko, R. Adelung, F. Faupel, Appl. Phys. A, Mater. Sci. Process. 92, 345 (2008) ADSCrossRefGoogle Scholar
  27. 27.
    M. Rong, M. Zhang, H. Liu, H. Zeng, Polymer 40, 6169 (1999) CrossRefGoogle Scholar
  28. 28.
    G. Treiber, K. Boehlke, A. Weitz, B. Wunderlich, J. Polym. Sci. 11, 1111 (1973) Google Scholar
  29. 29.
    R.A. Fava, A.E. Horsfield, J. Phys. D, Appl. Phys. 1, 117 (1968) ADSCrossRefGoogle Scholar
  30. 30.
    C.L. Jackson, G.B. McKenna, J. Non-Cryst. Solids 131–133, 221 (1991) CrossRefGoogle Scholar
  31. 31.
    M. Arndt, R. Stannarius, H. Groothues, E. Hempel, F. Kremer, Phys. Rev. Lett. 79, 2077 (1997) ADSCrossRefGoogle Scholar
  32. 32.
    J. Schueller, Yu.B. Mel’nichenko, R. Richert, E.W. Fisher, Phys. Rev. Lett. 73, 2224 (1994) ADSCrossRefGoogle Scholar
  33. 33.
    Y.C. Jean, R. Zhang, H. Cao, J.-P. Yuan, C.-M. Huang, B. Nielsen, P. Asoka-Kumar, Phys. Rev. B 56, R8459 (1997) ADSCrossRefGoogle Scholar
  34. 34.
    J.P. Killgore, L.S. Kocherlakota, R.M. Overney, J. Polym. Sci., Part B, Polym. Lett. 48, 434 (2010) ADSGoogle Scholar
  35. 35.
    M. Alcoutlabi, G.B. McKenna, J. Phys. Condens. Matter 17, R461 (2005) ADSCrossRefGoogle Scholar
  36. 36.
    D. Morineau, Y. Xia, C. Alba-Simionesco, J. Chem. Phys. 117, 8966 (2002) ADSCrossRefGoogle Scholar
  37. 37.
    C. Alba-Simionesco, G. Dosseh, E. Dumont, B. Frick, B. Geil, D. Morineau, V. Teboul, Y. Xia, Eur. Phys. J. E 12, 19 (2003) CrossRefGoogle Scholar
  38. 38.
    A. Bansal, H. Yang, C. Li, K. Cho, B.C. Benicewicz, S.K. Kumar, L.S. Schadler, Nat. Mater. 4, 693 (2005) ADSCrossRefGoogle Scholar
  39. 39.
    P. Rittigstein, R.D. Priestley, L.J. Broadblet, J.M. Torkelson, Nat. Mater. 6, 278 (2007) ADSCrossRefGoogle Scholar
  40. 40.
    J.M. Kropka, V. Pryamitsyn, V. Ganesan, Phys. Rev. Lett. 101, 075702 (2008) ADSCrossRefGoogle Scholar
  41. 41.
    H. Oh, P.F. Green, Nat. Mater. 8, 139 (2009) ADSCrossRefGoogle Scholar
  42. 42.
    C.L. Jackson, G.B. McKenna, J. Chem. Phys. 93, 9002 (1990) ADSCrossRefGoogle Scholar
  43. 43.
    S. Isoda, M. Tsuji, M. Ohara, A. Kawaguchi, K. Katayama, Polymer 24, 1155 (1983) CrossRefGoogle Scholar
  44. 44.
    J.P. Cleveland, B. Anczykowski, A.E. Schmid, V.B. Elings, Appl. Phys. Lett. 72, 2613 (1998) ADSCrossRefGoogle Scholar
  45. 45.
    A. San Paulo, R. Garcia, Phys. Rev. B 64, 193411 (2001) ADSCrossRefGoogle Scholar
  46. 46.
    S.N. Magonov, Handbook of Surfaces and Interfaces of Materials (Academic Press, San Diego, 2001), vol. 2, Chap. 10, p. 393 CrossRefGoogle Scholar
  47. 47.
    D.R. Streltsov, A.I. Buzin, E.I. Grigoriev, P.V. Dmitrykov, K.A. Mailyan, S.N. Chvalun, Nanotechnol. Russ. 3, 494 (2008) CrossRefGoogle Scholar
  48. 48.
    Y.-P. Zhao, J.B. Fortin, G. Bonvallet, G.-C. Wang, T.-M. Lu, Phys. Rev. Lett. 85, 3229 (2000) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Dmitry R. Streltsov
    • 1
    • 4
    Email author
  • Karen A. Mailyan
    • 2
  • Alexey V. Gusev
    • 2
  • Ilya A. Ryzhikov
    • 2
  • Natalia A. Erina
    • 3
  • Chanmin Su
    • 3
  • Andrey V. Pebalk
    • 4
  • Sergei A. Ozerin
    • 1
    • 4
  • Sergei N. Chvalun
    • 1
    • 4
  1. 1.Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of SciencesMoscowRussia
  2. 2.Institute for Theoretical and Applied Electromagnetics of the Russian Academy of SciencesMoscowRussia
  3. 3.Bruker-Nano Inc.Santa BarbaraUSA
  4. 4.National Research Centre “Kurchatov Institute”MoscowRussia

Personalised recommendations