Advertisement

Applied Physics A

, Volume 112, Issue 1, pp 105–111 | Cite as

Element analysis of complex materials by calibration-free laser-induced breakdown spectroscopy

  • J. D. Pedarnig
  • P. Kolmhofer
  • N. Huber
  • B. Praher
  • J. Heitz
  • R. Rössler
Article

Abstract

Laser-induced breakdown spectroscopy (LIBS) is a promising method for fast and quantitative element analysis of complex materials. We report on LIBS measurements of multi-component oxide materials and the compositional analysis of materials by a calibration-free (CF) method. This CF-LIBS method relies on modeling of the optical emission of laser-induced plasma assuming local thermodynamic equilibrium. Various materials are investigated and the calculated concentration values (C CF) of oxides CaO, Al2O3, MgO, SiO2, FeO, and MnO are in agreement with nominal concentration values (C N) from reference analysis. The relative error in oxide concentration e r=|C CFC N|/C N decreases with increasing concentration. The quantification is limited to major oxides (C N≥1 wt%). Slag samples from industrial steel production are analyzed on site by means of a mobile measurement system. LIBS measurements are performed at different sample temperatures. The results obtained show that CF-LIBS is applicable to fast compositional analysis of complex materials in harsh environments.

Keywords

Oxide Concentration Slag Sample Bulk Slag Slag Material Local Thermal Equilibrium State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We want to thank the Austrian Federal Ministry of Economy, Family and Youth and the National Foundation for Research, Technology and Development for financial support (Christian Doppler Laboratory LAD). We thank the B & C Privatstiftung for the Houska Recognition Award 2011 presented to the Christian Doppler Laboratory.

References

  1. 1.
    A.W. Miziolek, V. Palleschi, I. Schechter (eds.), Laser-Induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University Press, Cambridge, 2006) Google Scholar
  2. 2.
    D.A. Cremers, L.J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, New York, 2006) CrossRefGoogle Scholar
  3. 3.
    J.P. Singh, S.N. Thakur (eds.), Laser Induced Breakdown Spectroscopy (Elsevier, Amsterdam, 2007) Google Scholar
  4. 4.
    R. Noll, Laser Induced Breakdown Spectroscopy, Fundamentals and Applications (Springer, Berlin, 2011) Google Scholar
  5. 5.
    R. Noll, V. Sturm, Ü. Aydin, D. Eilers, C. Gehlen, M. Höhne, A. Lamott, J. Makowe, J. Vrenegor, Spectrochim. Acta. Part B 63, 1159 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    L.M. Cabalín, A. González, J. Ruiz, J.J. Laserna, Spectrochim. Acta. Part B 65, 680 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    S. Laville, M. Sabsabi, F.R. Doucet, Spectrochim. Acta. Part B 62, 1557 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, E. Tognoni, Appl. Spectrosc. 53, 960 (1999) ADSCrossRefGoogle Scholar
  9. 9.
    E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, I. Gornushkin, Spectrochim. Acta. Part B 62, 1287 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    V.S. Burakov, V.V. Kiris, P.A. Naumenkov, S.N. Raikov, J. Appl. Spectrosc. 71, 740 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    S.M. Pershin, F. Colao, V. Spizzichino, Laser Phys. 16, 455 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    J.A. Aguilera, C. Aragón, G. Cristoforetti, E. Tognoni, Spectrochim. Acta. Part B 64, 685 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    K.K. Herrera, E. Tognoni, I.B. Gornushkin, N. Omenetto, B.W. Smith, J.D. Winefordner, J. Anal. At. Spectrom. 24, 426 (2009) CrossRefGoogle Scholar
  14. 14.
    F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G.G. Ori, L. Marinangeli, A. Baliva, Planet. Space Sci. 52, 117 (2004) ADSCrossRefGoogle Scholar
  15. 15.
    B. Sallé, J.L. Lacour, P. Mauchien, P. Fichet, S. Maurice, G. Manhes, Spectrochim. Acta. Part B 61, 301 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    A. De Giacomo, M. Dell’Aglio, O. De Pascale, S. Longo, M. Capitelli, Spectrochim. Acta. Part B 62, 1606 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    V.K. Singh, V. Singh, A.K. Rai, S.N. Thakur, P.K. Rai, J.P. Singh, Appl. Opt. 47, G38 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    S. Pandhija, A.K. Rai, Appl. Phys. B 94, 545 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    M. Kraushaar, R. Noll, H.-U. Schmitz, Appl. Spectrosc. 57, 1282 (2003) ADSCrossRefGoogle Scholar
  20. 20.
    S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, A. Zigler, Spectrochim. Acta. Part B 56, 707 (2001) ADSCrossRefGoogle Scholar
  21. 21.
    V. Motto-Ros, A.S. Koujelev, G.R. Osinski, A.E. Dudelzak, J. Eur. Opt. Soc., Rapid Publ. 3, 08011 (2008) Google Scholar
  22. 22.
    G. Doujak, R. Mertens, W. Ramb, J. Flock, J. Geyer, S. Lüngen, Stahl Eisen 121, 53 (2001) Google Scholar
  23. 23.
    B. Praher, V. Palleschi, R. Viskup, J. Heitz, J.D. Pedarnig, Spectrochim. Acta. Part B 65, 671 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    B. Praher, R. Rössler, E. Arenholz, J. Heitz, J.D. Pedarnig, Anal. Bioanal. Chem. 400, 3367 (2011) CrossRefGoogle Scholar
  25. 25.
    NIST atomic spectra database. http://physics.nist.gov/PhysRefData/ASD/
  26. 26.
  27. 27.
    M.A. Gigosos, M.A. Gonzalez, V. Cardenoso, Spectrochim. Acta. Part B 58, 1489 (2003). ADSCrossRefGoogle Scholar
  28. 28.
    D. Bäuerle, Laser Processing and Chemistry, 4th edn. (Springer, Berlin, 2011) CrossRefGoogle Scholar
  29. 29.
    G. Nastasi, R. Wester, V. Colla, R. Noll, in Proc. 8th Int. Workshop Progress in Analytical Chemistry & Materials Characterisation in the Steel and Metals Industries (CETAS) (2011), pp. 423–426 Google Scholar
  30. 30.
    M.W. Egger, A. Pissenberger, St.A. Aigner, in Proc. 8th Int. Workshop Progress Analytical Chemistry & Materials Characterisation in the Steel and Metals Industries (CETAS) (2011), pp. 89–94 Google Scholar
  31. 31.
    P.J. Potts, M. Thompson, S. Wilson, Geostand. Newslett. 26, 197 (2002) CrossRefGoogle Scholar
  32. 32.
    I.B. Gornushkin, S.V. Shabanov, S. Merk, E. Tognoni, U. Panne, J. Anal. At. Spectrom. 25, 1643 (2010) CrossRefGoogle Scholar
  33. 33.
    T. Ctvrtníkova, L.M. Cabalín, J. Laserna, V. Kanický, Spectrochim. Acta. Part B 63, 42 (2008) ADSCrossRefGoogle Scholar
  34. 34.
    L. St-Onge, M. Sabsabi, P. Cielo, Spectrochim. Acta. Part B 53, 407 (1998) ADSCrossRefGoogle Scholar
  35. 35.
    V.I. Babushok, F.C. DeLucia Jr., J.L. Gottfried, C.A. Munson, A.W. Miziolek, Spectrochim. Acta. Part B 61, 999 (2006) ADSCrossRefGoogle Scholar
  36. 36.
    R. Viskup, B. Praher, T. Linsmeyer, H. Scherndl, J.D. Pedarnig, J. Heitz, Spectrochim. Acta. Part B 65, 935 (2010) ADSCrossRefGoogle Scholar
  37. 37.
    B.C. Windom, D.W. Hahn, J. Anal. At. Spectrom. 24, 1665 (2009) CrossRefGoogle Scholar
  38. 38.
    H. Heilbrunner, N. Huber, H. Wolfmeir, E. Arenholz, J.D. Pedarnig, J. Heitz, Appl. Phys. A 106, 15 (2012) ADSCrossRefGoogle Scholar
  39. 39.
    L.I. Kexue, W. Zhou, Q. Shen, J. Shao, H. Qian, Spectrochim. Acta. Part B 65, 420 (2010). ADSCrossRefGoogle Scholar
  40. 40.
    Y. Chen, Q. Zhang, G. Li, R. Li, J. Zhou, J. Anal. At. Spectrom. 25, 1969 (2010) CrossRefGoogle Scholar
  41. 41.
    W. Deng, Y. Liu, G. Wei, X. Li, X. Tu, L. Xie, H. Zhang, W. Sun, J. Anal. At. Spectrom. 25, 84 (2010) CrossRefGoogle Scholar
  42. 42.
    Q.Z. Bian, J. Koch, H. Lindner, H. Berndt, R. Hergenröder, K. Niemax, J. Anal. At. Spectrom. 20, 736 (2005) CrossRefGoogle Scholar
  43. 43.
    J.D. Pedarnig, J. Heitz, E.R. Ionita, G. Dinescu, B. Praher, R. Viskup, Appl. Surf. Sci. 257, 5452 (2011) ADSCrossRefGoogle Scholar
  44. 44.
    Y. Ikeda, A. Moon, M. Kaneko, Appl. Opt. 49, C95 (2010) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • J. D. Pedarnig
    • 1
  • P. Kolmhofer
    • 1
  • N. Huber
    • 1
  • B. Praher
    • 1
  • J. Heitz
    • 1
  • R. Rössler
    • 2
  1. 1.Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied PhysicsJohannes Kepler University LinzLinzAustria
  2. 2.voestalpine Stahl GmbHLinzAustria

Personalised recommendations