Advertisement

Applied Physics A

, Volume 110, Issue 4, pp 935–941 | Cite as

In-situ electrical characterisation of a photodiode during nano-structuring with a focussed ion beam

  • Jan Junis Rindermann
  • Mohammed Henini
  • Pavlos G. Lagoudakis
Article
  • 154 Downloads

Abstract

We study the fabrication and power conversion efficiency of GaAs photodiodes, which have been nano-structured and covered with colloidal quantum dots. A focussed ion beam is used to etch vertical channels into the photodiodes and the detrimental effects of this treatment are characterised in-situ during the fabrication process. A novel experimental configuration allows the electrical characterization of the photodiodes under laser illumination during the nano-fabrication process and reveals the gradual decrease of the photodiodes’ shunt resistance with increasing laterally revealed surface along the etched channels. This is interpreted as evidence for leakage currents through redeposited material and surface states on the lateral channel surface. After the fabrication step the channels are filled with colloidal quantum dots, which upon absorption of light transfer electronic excitations to the photodiode via resonance energy transfer. It is found that after the addition of quantum dots the nano-structured photodiodes show larger enhancements of the energy conversion efficiency under simulated solar irradiance than the pristine photodiodes. Nevertheless, the device degradation induced by the ion beam treatment itself cannot be compensated for.

Keywords

GaAs Power Conversion Efficiency Short Circuit Current Shunt Resistance Depletion Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We acknowledge funding from the EPSRC through Contract No. EP/G063494/1 as well as the European Network of Excellence Nanophotonics for Energy Efficiency (N4E) and the European project ITN-ICARUS. We also thank Dmitri V. Talapin for the provision of the colloidal QDs. J.J.R. is indebted to the Reiner–Lemoine–Stiftung, Germany, for financial support.

References

  1. 1.
    R.R. Lunt, T.P. Osedach, P.R. Brown, J.A. Rowehl, V. Bulovic, Adv. Mater. 23, 5712–5727 (2011) CrossRefGoogle Scholar
  2. 2.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovolt. 20, 12–20 (2012) CrossRefGoogle Scholar
  3. 3.
    S. Chanyawadee, R.T. Harley, D. Taylor, M. Henini, A.S. Susha, A.L. Rogach, P.G. Lagoudakis, Appl. Phys. Lett. 94, 233502 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    S. Chanyawadee, R.T. Harley, M. Henini, D.V. Talapin, P.G. Lagoudakis, Phys. Rev. Lett. 102, 077402 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, A. Madhukar, Nano Lett. 9, 4548–4552 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    S. Lu, A. Madhukar, Nano Lett. 7, 3443–3451 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    H.M. Nguyen, O. Seitz, W. Peng, Y.N. Gartenstein, Y.J. Chabal, A.V. Malko, ACS Nano 6, 5574–5582 (2012) CrossRefGoogle Scholar
  8. 8.
    D. Dexter, J. Lumin. 18, 779–784 (1979) CrossRefGoogle Scholar
  9. 9.
    M. Achermann, M.A. Petruska, S. Kos, D.L. Smith, D.D. Koleske, V. Klimov, Nature 429, 642–646 (2004) ADSCrossRefGoogle Scholar
  10. 10.
    S. Blumstengel, S. Sadofev, C. Xu, J. Puls, F. Henneberger, Phys. Rev. Lett. 97, 237401 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    G. Heliotis, G. Itskos, R. Murray, M.D. Dawson, I.M. Watson, D.D.C. Bradley, Adv. Mater. 18, 334–338 (2006) CrossRefGoogle Scholar
  12. 12.
    S. Rohrmoser, J. Baldauf, R.T. Harley, P.G. Lagoudakis, S. Sapra, A. Eychmüller, I. Watson, Appl. Phys. Lett. 91, 092126 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    G. Itskos, G. Heliotis, P.G. Lagoudakis, J.M. Lupton, N.P. Barradas, E. Alves, S. Pereira, I.M. Watson, M.D. Dawson, J. Feldmann, R. Murray, D.D.C. Bradley, Phys. Rev. B 76, 035344 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    S. Chanyawadee, P.G. Lagoudakis, R.T. Harley, D.G. Lidzey, M. Henini, Phys. Rev. B 77, 193402 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    C.R. Belton, G. Itskos, G. Heliotis, P.N. Stavrinou, P.G. Lagoudakis, J. Lupton, S. Pereira, E. Gu, C. Griffin, B. Guilhabert, I.M. Watson, A.R. Mackintosh, R.A. Pethrick, J. Feldmann, R. Murray, M.D. Dawson, D.D.C. Bradley, J. Phys. D, Appl. Phys. 41, 094006 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    J.J. Rindermann, G. Pozina, B. Monemar, L. Hultman, H. Amano, P.G. Lagoudakis, Phys. Rev. Lett. 107, 236805 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    A.H. Mueller, M.A. Petruska, M. Achermann, D.J. Werder, E.A. Akhadov, D.D. Koleske, M.A. Hoffbauer, V. Klimov, Nano Lett. 5, 1039–1044 (2005) ADSCrossRefGoogle Scholar
  18. 18.
    M. Achermann, M.A. Petruska, D.D. Koleske, M.H. Crawford, V. Klimov, Nano Lett. 6, 1396–1400 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    S. Chanyawadee, P. Lagoudakis, R. Harley, M. Charlton, D. Talapin, H. Huang, C. Lin, Adv. Mater. 22, 602–606 (2009) CrossRefGoogle Scholar
  20. 20.
    G. Itskos, C. Belton, G. Heliotis, I. Watson, M. Dawson, Nanotechnology 20, 275207 (2009) ADSCrossRefGoogle Scholar
  21. 21.
    S. Nizamoglu, T. Erdem, X.W. Sun, H.V. Demir, Opt. Lett. 35, 3372 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    V.M. Agranovich, Y.N. Gartstein, M. Litinskaya, Chem. Rev. 111, 5179 (2011) CrossRefGoogle Scholar
  23. 23.
    D.V. Talapin, R. Koeppe, S. Gotzinger, A. Kornowski, J.M. Lupton, A.L. Rogach, O. Benson, J. Feldmann, H. Weller, Nano Lett. 3, 1677 (2003) ADSCrossRefGoogle Scholar
  24. 24.
    A.A. Tseng, J. Micromech. Microeng. 14, R15–R34 (2004) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Jan Junis Rindermann
    • 1
  • Mohammed Henini
    • 2
  • Pavlos G. Lagoudakis
    • 1
  1. 1.School of Physics & AstronomyUniversity of SouthamptonSouthamptonUK
  2. 2.School of Physics & AstronomyUniversity of NottinghamNottinghamUK

Personalised recommendations