Applied Physics A

, Volume 110, Issue 4, pp 785–792 | Cite as

Plasma property effects on spectral line broadening in double-pulse laser-induced breakdown spectroscopy

  • Inhee Choi
  • Xianglei Mao
  • J. Jhanis Gonzalez
  • Richard E. Russo
Article

Abstract

Double-pulse Laser-Induced Breakdown Spectroscopy (LIBS) in an orthogonal configuration was used to investigate plasma temperature and electron density effects on Mg II emission spectral line broadening. The experiments were carried out with two Nd:YAG lasers, one operating at 355 nm for ablation and the other one at 1064 nm for plasma reheating in air at atmospheric pressure. Temporally resolved plasma temperature and electron density were measured at various delay times. Data in this study show prolonged emission of Mg II (280.27 nm) as well as enhancement of the signal intensity when using double-pulse excitation compared to the single-pulse case. An enhancement of ∼8× was attained with a delay between the laser pulses equal to 1 μs. The enhancement was accompanied by higher plasma temperature and increased electron density. The double-pulse LIBS configuration provides energy to sustain the plasma emission at a period in time when the linewidth is minimum, thereby improving the analytical capabilities of low spectral resolution instrumentation typically used in LIBS system.

References

  1. 1.
    R.E. Russo, X.L. Mao, C. Liu, J.J. Gonzalez, Laser assisted plasma spectrochemistry: laser ablation. J. Anal. At. Spectrom. 19, 1084–1089 (2004) CrossRefGoogle Scholar
  2. 2.
    X.L. Mao, S. Wen, R.E. Russo, Time resolved laser-induced plasma dynamics. Appl. Surf. Sci. 253, 6316–6321 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    K. Song, Y.-L. Lee, J. Sneddon, Recent developments in instrumentation for laser induced breakdown spectroscopy. Appl. Spectrosc. Rev. 37, 89–117 (2002) ADSCrossRefGoogle Scholar
  4. 4.
    M. Weidman, S. Palanco, M. Baudelet, M.C. Richardson, Thermodynamic and spectroscopic properties of Nd:YAG-CO2 double-pulse laser-induced iron plasmas. Spectrochim. Acta, Part B, At. Spectrosc. 64, 961–967 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    C. Aragón, J.A. Aguilera, Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods. Spectrochim. Acta, Part B, At. Spectrosc. 63, 893–916 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    X.K. Shena, Y.F. Lu, Detection of uranium in solids by using laser-induced breakdown spectroscopy combined with laser-induced fluorescence. Appl. Opt. 47, 1810–1815 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    V. Strum, H.-U. Schmitz, T. Reuter, R. Fleige, R. Noll, Fast vacuum slag analysis in a steel works by laser-induced breakdown spectroscopy. Spectrochim. Acta, Part B, At. Spectrosc. 63, 1167–1170 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    D.W. Hahn, M.M. Lunden, Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy. Aerosol Sci. Technol. 33, 30–48 (2000) CrossRefGoogle Scholar
  9. 9.
    R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, Laser-induced breakdown spectrometry-applications for production control and quality assurance in the steel industry. Spectrochim. Acta, Part B, At. Spectrosc. 56, 634–649 (2001) CrossRefGoogle Scholar
  10. 10.
    L. Barrette, S. Turmel, On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphitic vs. total carbon detection. Spectrochim. Acta, Part B, At. Spectrosc. 56, 715–723 (2001) ADSCrossRefGoogle Scholar
  11. 11.
    O. Samek, D.C.S. Beddows, H.H. Tellec, G.W. Morris, M. Liska, J. Kaiser, Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy. Appl. Phys. A 69, S179–S182 (1999) ADSGoogle Scholar
  12. 12.
    F.R. Doucet, G. Lithgow, R. Kosierb, P. Bouchard, M. Sabsabi, Determination of isotope ratios using laser-induced breakdown spectroscopy in ambient air at atmospheric pressure for nuclear forensics. J. Anal. At. Spectrom. 26, 536–541 (2011) CrossRefGoogle Scholar
  13. 13.
    V.I. Babushok, F.C. DeLucia Jr., J.L. Gottfied, C.A. Munson, A.W. Miziolek, Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement. Spectrochim. Acta, Part B, At. Spectrosc. 61, 999–1014 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    J. Scaffidi, S.M. Angel, D.A. Cremers, Emission enhancement mechanisms in dual-pulse LIBS. Anal. Chem. 78(1), 24–32 (2006) CrossRefGoogle Scholar
  15. 15.
    X. Mao, X. Zeng, S.-B. Wen, R.E. Russo, Time-resolved plasma properties for double pulsed laser-induced breakdown spectroscopy of silicon. Spectrochim. Acta, Part B, At. Spectrosc. 60, 960–967 (2005) ADSCrossRefGoogle Scholar
  16. 16.
    J. Scaffidi, W. Pearman, J.C. Carter, B.W. Colston Jr., S.M. Angel, Temporal dependence of the enhancement of material removal in femtosecond–nanosecond dual-pulse laser-induced breakdown spectroscopy. Appl. Opt. 43, 6492–6499 (2004) ADSCrossRefGoogle Scholar
  17. 17.
    J. Scaffidi, W. Pearman, J.C. Carter, S.M. Angel, Observations in collinear femtosecond–nanosecond dual-pulse laser-induced breakdown spectroscopy. Appl. Spectrosc. 60, 65–71 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    A.P.M. Michel, A.D. Chave, Double pulse laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: interrelationship of gate delay, pulse energies, interpulse delay, and pressure. Appl. Opt. 47, G131–G143 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    Y. Dikmelik, C. McEnnis, J.B. Spicer, Femtosecond and nanosecond laser-induced breakdown spectroscopy of trinitrotoluene. Opt. Express 16, 5332–5337 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    S.L. Liu, N.H. Cheung, Minimally destructive analysis of aluminum alloys by resonance-enhanced laser-induced plasma spectroscopy. Anal. Chem. 77, 2617–2623 (2005) CrossRefGoogle Scholar
  21. 21.
    C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, J. Dubessy, Quantification of the intensity enhancements for the double-pulse laserinduced breakdown spectroscopy in the orthogonal beam geometry. Spectrochim. Acta, Part B, At. Spectrosc. 60, 265–276 (2005) ADSCrossRefGoogle Scholar
  22. 22.
    L. St-Onge, V. Detalle, M. Sabsabi, Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses. Spectrochim. Acta, Part B, At. Spectrosc. 57, 121–135 (2002) ADSCrossRefGoogle Scholar
  23. 23.
    R.E. Russo, A.A. Bol’shakov, X. Mao, C.P. Mckay, D.L. Perry, O. Sorkhabi, Laser ablation molecular isotopic spectrometry. Spectrochim. Acta, Part B, At. Spectrosc. 66, 99–104 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    X. Mao, A.A. Bol’shakov, D.L. Perry, O. Sorkhabi, R.E. Russo, Laser ablation molecular isotopic spectrometry: parameter influence on boron isotope measurements. Spectrochim. Acta, Part B, At. Spectrosc. 66, 604–609 (2011) ADSCrossRefGoogle Scholar
  25. 25.
    X. Mao, A.A. Bol’shakov, I. Choi, C.P. Mckay, D.L. Perry, O. Sorkhabi, R.E. Russo, Laser ablation molecular isotopic spectrometry: strontium and its isotopes. Spectrochim. Acta, Part B, At. Spectrosc. 66, 767–775 (2011) ADSCrossRefGoogle Scholar
  26. 26.
    W. Pietsch, A. Peitit, A. Briand, Isotope ratio determination of uranium by optical emission spectroscopy on a laser-produced plasma—basic investigations and analytical results. Spectrochim. Acta, Part B, At. Spectrosc. 53, 751–761 (1998) ADSCrossRefGoogle Scholar
  27. 27.
    C. Smith, M. Martinez, D. Veirs, D. Cremers, Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma. Spectrochim. Acta, Part B, At. Spectrosc. 57, 929–937 (2002) ADSCrossRefGoogle Scholar
  28. 28.
    B. Edian, A. Olme, G. Herzberga, J.W.C. Johns, Ionization potential of boron, and the isotopic and fine structure of 2s2p22D. J. Opt. Soc. Am. 60, 889–891 (1970) ADSCrossRefGoogle Scholar
  29. 29.
    V. Pinon, D. Anglos, Optical emission studies of plasma induced by single and double femtosecond laser pulses. Spectrochim. Acta, Part B, At. Spectrosc. 64, 950–960 (2009) ADSCrossRefGoogle Scholar
  30. 30.
    I.G. Gornushkin, L.A. King, B.W. Smith, N. Omenetto, J.D. Winefordner, Line broadening mechanisms in the low pressure laser-induced plasma. Spectrochim. Acta, Part B, At. Spectrosc. 54, 1207–1217 (1999) ADSCrossRefGoogle Scholar
  31. 31.
    E. Tognoni, V. Palleschi, M. Corsi, G. Cristoforetti, Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches. Spectrochim. Acta, Part B, At. Spectrosc. 57, 1115–1130 (2002) ADSCrossRefGoogle Scholar
  32. 32.
    V.N. Rai, F.-Y. Yueh, J.P. Singh, Time-dependent single and double pulse laser-induced breakdown spectroscopy of chromium in liquid. Appl. Opt. 47, G21–G29 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    L. St-Onge, M. Sabsabi, P. Cielo, Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode. Spectrochim. Acta, Part B, At. Spectrosc. 53, 407–415 (1998) ADSCrossRefGoogle Scholar
  34. 34.
    R. LeHarzic, D. Breitlin, S. Sommer, C. Fohl, K. Konig, F. Dausinger, E. Audouard, Processing of metal by double pulses with short laser pulses. Appl. Phys. A 81, 1121–1125 (2005) ADSCrossRefGoogle Scholar
  35. 35.
    X. Mao, X. Zeng, S.-B. Wen, R.E. Russo, Time-resolved plasma properties for double pulsed laser-induced breakdown spectroscopy of silicon. Spectrochim. Acta, Part B, At. Spectrosc. 60, 960–967 (2005) ADSCrossRefGoogle Scholar
  36. 36.
    S.M. Ange, D.N. Stratis, K.K. Elnad, T. Lai, M.A. Berg, D.M. Gold, LIBS using dula- and ultra-short laser pulses. Fresenius J. Anal. Chem. 369, 320–327 (2001) CrossRefGoogle Scholar
  37. 37.
    R. Noll, R. Sattmann, V. Sturm, S. Winkelmarm, Space-and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples. J. Anal. At. Spectrom. 19, 419–428 (2004) CrossRefGoogle Scholar
  38. 38.
    W. Lochte-Holtgreven, Evaluation of plasma parameters, in Plasma Diagnostics (AIP, New York, 1995). Chap. 3 Google Scholar
  39. 39.
    H.R. Griem, Spectral Line Broadening by Plasmas (Academic Press, New York, 1974), pp. 320–365 Google Scholar
  40. 40.
    C. Colón, G. Hatem, E. Verdugo, P. Ruiz, J. Campos, Measurement of the Stark broadening and shift parameters for several ultraviolet lines of singly ionized aluminum. J. Appl. Phys. 73, 4752–4758 (1993) ADSCrossRefGoogle Scholar
  41. 41.
    X. Zeing, S. Mao, C. Liu, X. Mao, R. Grief, R. Russo, Plasma diagnostics during laser ablation in a cavity. Spectrochim. Acta, Part B, At. Spectrosc. 58(5), 867–877 (2003) ADSCrossRefGoogle Scholar
  42. 42.
    A. De Giacomo, M. Dell’ Aglio, D. Bruno, R. Gaudiuso, O. De Pascale, Experimental and theoretical comparison of sing-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples. Spectrochim. Acta, Part B, At. Spectrosc. 63, 805–816 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Inhee Choi
    • 1
  • Xianglei Mao
    • 1
  • J. Jhanis Gonzalez
    • 1
  • Richard E. Russo
    • 1
  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations