Applied Physics A

, Volume 110, Issue 3, pp 649–654 | Cite as

Melting of Al by ultrafast laser pulses: dynamics at the melting threshold

Article

Abstract

Using molecular-dynamics simulation, we investigate the melting of a thin Al slab by ultrafast laser irradiation. We employ a laser energy, which is just around the melting threshold. While the equilibrium electron–phonon coupling is well understood, we investigate the influence of the early (i.e., prior to electron thermalization) electron-lattice energy transfer. To this end, as a model study, we vary the fraction of the laser energy, which is directly given to lattice atoms vs. that given to the electronic system. We find that the melting process depends sensitively on the early electron-lattice heating rate. The pressure build-up within the still solid parts of the slab is identified as the main agent which delays the melting transition. The changes in the simulated structure factor data suggest that X-ray measurements of thin films performed just around the melting transition—even if performed long after electron thermalization—may provide information on the early electron-lattice energy coupling process.

Notes

Acknowledgements

This work was supported by the BMBF (Grant no. FSP 301 FLASH). We acknowledge discussions with K. Sokolowski-Tinten, L. Zhigilei, B. Rethfeld, and N. Medvedev on this subject.

References

  1. 1.
    B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S.I. Anisimov, Phys. Rev. B 65, 092103 (2002) ADSCrossRefGoogle Scholar
  2. 2.
    D.S. Ivanov, L.V. Zhigilei, Phys. Rev. Lett. 91, 105701 (2003) ADSCrossRefGoogle Scholar
  3. 3.
    D.S. Ivanov, L.V. Zhigilei, Phys. Rev. B 68, 064114 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    B. Rethfeld, V.V. Temnov, K. Sokolowski-Tinten, P. Zhou, D. von der Linde, S.I. Anisimov, S.I. Ashitkov, M.B. Agranat, J. Opt. Technol. 71, 348 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    A.K. Upadhyay, H.M. Urbassek, J. Phys. D 38, 2933 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    A.K. Upadhyay, H.M. Urbassek, J. Phys. D 40, 3518 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    D.S. Ivanov, L.V. Zhigilei, Phys. Rev. Lett. 98, 195701 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    W.-L. Chan, R.S. Averback, D.G. Cahill, A. Lagoutchev, Phys. Rev. B 78, 214107 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    N.A. Inogamov, V.V. Zhakhovskii, S.I. Ashitkov, V.A. Khokhlov, Y.V. Petrov, P.S. Komarov, M.B. Agranat, S.I. Anisimov, K. Nishihara, Appl. Surf. Sci. 255, 9712 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    C. Schäfer, H.M. Urbassek, L.V. Zhigilei, Phys. Rev. B 66, 115404 (2002) ADSCrossRefGoogle Scholar
  11. 11.
    S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Sov. Phys. JETP 39, 375 (1974) ADSGoogle Scholar
  12. 12.
    B. Rethfeld, A. Kaiser, M. Vicanek, G. Simon, Phys. Rev. B 65, 214303 (2002) ADSCrossRefGoogle Scholar
  13. 13.
    N. Medvedev, B. Rethfeld, AIP Conf. Proc. 1278, 250 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    Z. Lin, L.V. Zhigilei, V. Celli, Phys. Rev. B 77, 075133 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    T.J. Colla, H.M. Urbassek, Radiat. Eff. Defects Solids 142, 439 (1997) ADSCrossRefGoogle Scholar
  16. 16.
    T. Ikeshoji, B. Hafskjold, Molec. Phys. 81, 251 (1994) ADSCrossRefGoogle Scholar
  17. 17.
    S.M. Foiles, J.B. Adams, Phys. Rev. B 40, 5909 (1989) ADSCrossRefGoogle Scholar
  18. 18.
    F. Ercolessi, J.B. Adams, Europhys. Lett. 26, 583 (1994) ADSCrossRefGoogle Scholar
  19. 19.
    A.K. Upadhyay, H.M. Urbassek, Phys. Rev. B 73, 035421 (2006) ADSCrossRefGoogle Scholar
  20. 20.
    C.E. Klots, J. Chem. Phys. 83, 5854 (1985) ADSCrossRefGoogle Scholar
  21. 21.
    J.R. Morris, X. Song, J. Chem. Phys. 116, 9352 (2002) ADSCrossRefGoogle Scholar
  22. 22.
    Z. Lin, L.V. Zhigilei, Phys. Rev. B 73, 184113 (2006) ADSCrossRefGoogle Scholar
  23. 23.
    K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. Förster, M.H. von Hoegen, D. von der Linde, Nature 422, 287 (2003) ADSCrossRefGoogle Scholar
  24. 24.
    M. Nicoul, U. Shymanovich, A. Tarasevitch, D. von der Linde, K. Sokolowski-Tinten, Appl. Phys. Lett. 98, 191902 (2011) ADSCrossRefGoogle Scholar
  25. 25.
    A.V. Bushman, G.I. Kanel’, A.L. Ni, V.E. Fortov, Intense Dynamic Loading of Condensed Matter (Taylor & Francis, Washington, 1993). first edition published in 1988 by the Institute of Chemical Physics, USSR Academy of Sciences Google Scholar
  26. 26.
    A.K. Upadhyay, N.A. Inogamov, B. Rethfeld, H.M. Urbassek, Phys. Rev. B 78, 045437 (2008) ADSCrossRefGoogle Scholar
  27. 27.
    Y. Rosandi, H.M. Urbassek, Appl. Phys. A 101, 509 (2010) ADSCrossRefGoogle Scholar
  28. 28.
    Y. Waseda, K.T. Jacob, Phys. Status Solidi A 68, K117 (1981) ADSCrossRefGoogle Scholar
  29. 29.
    P.B. Thakor, V.N. Patel, B.Y. Thkore, P.N. Gajjar, A.R. Jani, Indian J. Pure Appl. Phys. 46, 431 (2008) Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Fachbereich Physik und Forschungszentrum OPTIMASUniversität KaiserslauternKaiserslauternGermany
  2. 2.Department of PhysicsUniversitas PadjadjaranSumedangIndonesia

Personalised recommendations