Applied Physics A

, Volume 110, Issue 2, pp 371–377 | Cite as

New milarite/osumilite-type phase formed during ancient glazing of an Egyptian scarab

  • G. Artioli
  • I. Angelini
  • F. Nestola


A scarab found in grave 25 of the Monte Prama necropolis, near Cabras, Oristano, Sardinia, is of special importance for the archaeological interpretation and dating of this important archaeological site. The object has been misinterpreted in the past as composed by bone: recent archaeometric analyses showed that it is a glazed steatite of Egyptian origin and that the altered surface contains interesting phases crystallized during the high-temperature interaction of the Mg-rich talc core with the alkali-rich glass used for glazing. A novel single crystal X-ray diffraction analysis of one of the phases indicates that it is a new compound having the milarite-osumilite structure type, with a peculiar composition close to (Na1.52K0.120.36)(Mg3)(Mg1.72Cu0.16Fe0.12)(Si11.4Al0.6)O30, not reported for naturally occurring minerals. The structural and crystal chemical features of the compound, together with the known high-temperature stability of the series, allow a complete interpretation of the glazing process and conditions, based on direct application of the glaze on the steatite core with subsequent treatment at temperatures above 1000 °C.


Cristobalite Enstatite Altered Surface Full Occupancy Lotus Flower 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The investigation was possible thanks to the collaboration with the Soprintendenza per I Beni Archeologici per le Province di Cagliari e Oristano in the person of Dr. Marco Edoardo Minoja and Dr. Alessandro Usai, who allowed access to the archeological material.


  1. 1.
    Mont’e Prama Prenda ‘e Zenia, Un programma di intervento della Soprintendenza per i Beni Archeologici delle Province di Sassari e Nuoro eseguito presso il Centro di Conservazione e Restauro di Sassari (CCA Centro di Conservazione Archeologica di Roma 2011). Accessed 20 March 2012
  2. 2.
    G. Lilliu, La civiltà nuragica. Sardegna Archeologica, Studi e Monumenti 2 (Carlo Delfino Editore, Roma, 1999) Google Scholar
  3. 3.
    G. Lilliu, La Civiltà dei Sardi. Dal Paleolitico all’età dei Nuraghi (Edizioni il Maestrale, Nuoro, 2003) Google Scholar
  4. 4.
    C. Tronchetti, Sard. Corsica Balear. Antiq. v. 2007, 99 (2008) Google Scholar
  5. 5.
    C. Tronchetti, in Il Mediterraneo di Herakles, ed. by P. Bernardini, R. Zucca (Carocci Editore, Roma, 2005), pp. 145–167 Google Scholar
  6. 6.
    C. Tronchetti, in Studies in Sardinian Archaeology II: Sardinia in the Mediterranean, ed. by M.S. Balmuth (University of Michigan Press, Ann Arbor, 1986), pp. 41–59 Google Scholar
  7. 7.
    A.F. Gorton, Egyptian and Egyptianizing Scarabs: A Typology of Steatite, Faience, and Paste Scarabs from Punic and Other Mediterranean Sites (Oxford University Committee for Archaeology, Oxford, 1996) Google Scholar
  8. 8.
    A. Stiglitz, Sard. Corsica Balear. Antiq. v. 2007, 87 (2008) Google Scholar
  9. 9.
    A. Stiglitz, Lo scaraboide della tomba 25, in La Pietra e Gli Eroi. Le Sculture Restaurate di Mont’e Prama, ed. by A. Usai (Direzione Generale per le Antichità, Roma, 2012) Google Scholar
  10. 10.
    I. Angelini, G. Artioli, Analisi archeometriche sullo scarabeo ed i vaghi di collana, in La Pietra e Gli Eroi. Le Sculture Restaurate di Mont’e Prama, ed. by A. Usai (Direzione Generale per le Antichità, Roma, 2012) Google Scholar
  11. 11.
    M. Nakahira, T. Kato, Clays Clay Miner. 12, 21 (1963) ADSCrossRefGoogle Scholar
  12. 12.
    M. Wesolowski, Thermochim. Acta 78, 395 (1984) CrossRefGoogle Scholar
  13. 13.
    M. Zhang, Q. Hui, X.-J. Lou, S.A.T. Redfern, E.K.H. Salje, S.C. Tarantino, Am. Mineral. 91, 816 (2006) CrossRefGoogle Scholar
  14. 14.
    M.S. Tite, M. Bimson, World Archaeol. 21, 87 (1989) CrossRefGoogle Scholar
  15. 15.
    M.S. Tite, A.J. Shortland, A. Bouquillon, in Production Technology of Faience and Related Early Vitreous Materials, ed. by M.S. Tite, A.J. Shortland, Monography, vol. 72 (Oxford School of Archaeology, Oxford, 2008), pp. 23–36 Google Scholar
  16. 16.
    G.M. Sheldrick, SHELX-97, Programs for Crystal Structure Analysis (University of Göttingen, Germany, 1997) Google Scholar
  17. 17.
    N. Nguyen, J. Choisnet, B. Raveau, J. Solid State Chem. 34, 1 (1980) ADSCrossRefGoogle Scholar
  18. 18.
    E.N. Maslen, A.G. Fox, M.A. O’Keefe, in International Tables for Crystallography, vol. C, Mathematical, Physical and Chemical Tables, Part 6, ed. by E. Prince (International Union of Crystallography, Chester, 2006), pp. 554–590 Google Scholar
  19. 19.
    F.C. Hawthorne, M. Kimata, P. Cerny, N. Ball, G.P. Rossman, J.D. Grice, Am. Mineral. 76, 1836 (1991) Google Scholar
  20. 20.
    W. Winter, T. Armbruster, C. Lengauer, Eur. J. Mineral. 7, 277 (1995) Google Scholar
  21. 21.
    W. Winter, A. Berger, B. Muller, W. Pannhorst, J. Am. Ceram. Soc. 76, 1837 (1993) CrossRefGoogle Scholar
  22. 22.
    K. Lambrinou, K. Vleugels, A.R. Boccaccini, J. Am. Ceram. Soc. 90, 590 (2007) CrossRefGoogle Scholar
  23. 23.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976) ADSCrossRefGoogle Scholar
  24. 24.
    K. Abraham, W. Gebert, O. Medenbach, W. Schreyer, G. Hentschel, Contrib. Mineral. Petrol. 82, 252 (1983) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Dept. of GeosciencesUniversità di PadovaPadovaItaly

Personalised recommendations