Applied Physics A

, Volume 109, Issue 3, pp 679–684 | Cite as

Femtosecond laser processing of fused silica and aluminum based on electron dynamics control by shaping pulse trains

  • Ni Leng
  • Lan Jiang
  • Xin Li
  • Chuancai Xu
  • Pengjun Liu
  • Yongfeng Lu
Article

Abstract

The pulse train effects on femtosecond laser material processing are investigated from the viewpoint of electron dynamics on dielectrics with fused silica as a case study and metals with Al as a case study in air and water. During femtosecond laser (800 nm, 35 fs) pulse train (double pulses per train) processing of fused silica, a non-monotonic relationship between ablation size and pulse separation is observed with an abrupt rise in the range of 150–275 fs. It is assumed that this is due to the enhancement of photon–electron coupling efficiency and transition of the phase-change mechanism by adjusting the free electron density during pulse train ablation. Surface quality in Al is improved with less recast by designing the pulse energy distribution to adjust the electron/lattice temperature distribution. Furthermore, the positive effects on ablation quality by femtosecond pulse train technology are more significant in water than those in air.

Keywords

Ultra-fast laser Laser material processing Pulse shaping Femtosecond phenomenon 

Notes

Acknowledgements

This research is supported by the National Basic Research Program of China (973 Program) (grant 2011CB013000) and the National Natural Science Foundation of China (NSFC) (grants 90923039 and 51025521).

References

  1. 1.
    J. Jasapara, A.V.V. Nampoothiri, W. Rudolph, D. Ristau, K. Starke, Phys. Rev. B 63, 045117 (2001) ADSCrossRefGoogle Scholar
  2. 2.
    G. Dumitru, V. Romano, H.P. Weber, M. Sentis, W. Marine, Appl. Phys. A, Mater. Sci. Process. 74, 729 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    S. Juodkazis, H. Okuno, N. Kujime, S. Matsuo, H. Misawa, Appl. Phys. A, Mater. Sci. Process. 79, 1555 (2004) ADSGoogle Scholar
  4. 4.
    M.E. Povarnitsyn, T.E. Itina, M. Sentis, K.V. Khishchenko, P.R. Levashov, Phys. Rev. B 75, 235414 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    S. Nolte, M. Will, J. Burghoff, A. Tuennermann, Appl. Phys. A, Mater. Sci. Process. 77, 109 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    W. Watanabe, N. Arakawa, S. Matsunaga, T. Higashi, K. Fukui, K. Isobe, K. Itoh, Opt. Express 12, 4203 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    M.P. Echlin, N.S. Husseini, J.A. Nees, T.M. Pollock, Adv. Mater. 23, 2339 (2011) CrossRefGoogle Scholar
  8. 8.
    E. Goulielmakis, M. Schultze, M. Hofstetter, V.S. Yakovlev, J. Gagnon, M. Uiberacker, A.L. Aquila, E.M. Gullikson, D.T. Attwood, R. Kienberger, F. Krausz, U. Kleineberg, Science 320, 1614 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    S.X. Hu, L.A. Collins, Phys. Rev. Lett. 96, 073004 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    F. Remacle, R.D. Levine, Proc. Natl. Acad. Sci. USA 103, 6793 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    C. Wang, L. Jiang, F. Wang, X. Li, Y.P. Yuan, H.L. Tsai, Phys. Lett. A 375, 3200 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    C. Wang, L. Jiang, F. Wang, X. Li, Y.P. Yuan, H. Xiao, H.L. Tsai, Y.F. Lu, J. Phys. Condens. Matter 24, 275801 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    L. Jiang, P.J. Liu, X.L. Yan, N. Leng, C.C. Xu, H. Xiao, Y.F. Lu, Opt. Lett. 37, 2781 (2012) ADSCrossRefGoogle Scholar
  14. 14.
    L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, T. Baumert, Opt. Express 15, 17855 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    M. Renard, E. Hertz, B. Lavorel, O. Faucher, Phys. Rev. A 69, 043401 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    A. Lindinger, C. Lupulescu, M. Plewicki, F. Vetter, A. Merli, M.S. Weber, L. Wöste, Phys. Rev. Lett. 93, 033001 (2004) ADSCrossRefGoogle Scholar
  17. 17.
    A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, G. Gerber, Science 282, 919 (1998) ADSCrossRefGoogle Scholar
  18. 18.
    S. Amoruso, R. Bruzzese, X. Wang, Appl. Phys. Lett. 95, 251501 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    S. Preuss, M. Spath, Y. Zhang, M. Stuke, Appl. Phys. Lett. 62, 3049 (1993) ADSCrossRefGoogle Scholar
  20. 20.
    S. Preuss, M. Stuke, Appl. Phys. Lett. 67, 338 (1995) ADSCrossRefGoogle Scholar
  21. 21.
    R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I.V. Hertel, Appl. Phys. A, Mater. Sci. Process. 77, 265 (2003) ADSGoogle Scholar
  22. 22.
    R. Le Harzic, D. Breitling, S. Sommer, C. Föhl, K. König, F. Dausinger, E. Audouard, Appl. Phys. A, Mater. Sci. Process. 81, 1121 (2005) ADSCrossRefGoogle Scholar
  23. 23.
    C.M. Liebig, P. Srisungsitthisunti, A.M. Weiner, X. Xu, Appl. Phys. A, Mater. Sci. Process. 101, 487 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    M.E. Povarnitsyn, T.E. Itina, P.R. Levashov, K.V. Khishchenko, Appl. Surf. Sci. 257, 5168 (2011) ADSCrossRefGoogle Scholar
  25. 25.
    S. Zoppel, M. Farsari, R. Merz, J. Zehetner, G. Stangl, G.A. Reider, C. Fotakis, Microelectron. Eng. 83, 1400 (2006) CrossRefGoogle Scholar
  26. 26.
    R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, F. Dausinger, Appl. Surf. Sci. 249, 322 (2005) ADSCrossRefGoogle Scholar
  27. 27.
    L. Jiang, H.L. Tsai, Appl. Phys. Lett. 87, 151104 (2005) ADSCrossRefGoogle Scholar
  28. 28.
    Y.P. Deng, X.H. Xie, H. Xiong, Y.X. Leng, C.F. Cheng, H.H. Lu, R.X. Li, Z.Z. Xu, Opt. Express 13, 3096 (2005) ADSCrossRefGoogle Scholar
  29. 29.
    G.Q. Du, F. Chen, Q. Yang, J.H. Si, X. Hou, Opt. Commun. 284, 640 (2011) ADSCrossRefGoogle Scholar
  30. 30.
    D.E. Roberts, A. du Plessis, L.R. Both, Appl. Surf. Sci. 256, 1784 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    C.R. Cheng, X.F. Xu, Phys. Rev. B 72, 165415 (2005) ADSCrossRefGoogle Scholar
  32. 32.
    M.E. Povarnitsyn, K.V. Khishchenko, P.R. Levashov, Appl. Surf. Sci. 255, 5120 (2005) ADSCrossRefGoogle Scholar
  33. 33.
    D. Perez, L.J. Lewis, Phys. Rev. B 67, 184102 (2003) ADSCrossRefGoogle Scholar
  34. 34.
    N.N. Nedialkov, P.A. Atanasov, S. Amoruso, R. Bruzzese, X. Wang, Appl. Surf. Sci. 253, 7761 (2007) ADSCrossRefGoogle Scholar
  35. 35.
    S. Amoruso, R. Bruzzese, X. Wang, N.N. Nedialkov, P.A. Atanasov, J. Phys. D, Appl. Phys. 40, 331 (2007) ADSCrossRefGoogle Scholar
  36. 36.
    G. Daminelli, J. Krüger, W. Kautek, Thin Solid Films 467, 334 (2004) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ni Leng
    • 1
  • Lan Jiang
    • 1
  • Xin Li
    • 1
  • Chuancai Xu
    • 1
  • Pengjun Liu
    • 1
  • Yongfeng Lu
    • 2
  1. 1.NanoManufacturing Fundamental Research Joint Laboratory of National Science Foundation of China, School of Mechanical EngineeringBeijing Institute of TechnologyBeijingP.R. China
  2. 2.Department of Electrical EngineeringUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations