Skip to main content
Log in

Electronic states of self stabilized L10 FePt alloy nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The ligand capped bimetallic FePt alloys were prepared by using the chemical coreduction method in the presence of oleic acid and oleylamine. An X-ray photoelectron spectroscopy (XPS) study on the as prepared and annealed samples reveals the degradation of hydrocarbon capping with annealing temperature along with a phase transformation to a L10 phase. This degradation of organic capping results in formation of capping layer over FePt which has been observed using High Resolution Transmission electron microscopy (HRTEM). This capping layer over the FePt nanoparticles was further investigated with Raman studies confirming the presence of the graphitic carbon. The presence of the graphitic layer enhances the stability of FePt nanoparticles by protecting the surface against oxidation. This was confirmed by the magnetic measurements which show a high coercivity of 11.8 kOe, retained over a period of one year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Science 287, 1989–1992 (2000)

    Article  ADS  Google Scholar 

  2. R. Medwal, N. Sehdev, S. Annapoorni, J. Phys. D, Appl. Phys. 45, 055001-1-6 (2012)

    Article  ADS  Google Scholar 

  3. C.N. Chinnasamy, B. Jeyadevan, K. Shinoda, K. Tohji, J. Appl. Phys. 93, 7583–7585 (2003)

    Article  ADS  Google Scholar 

  4. T. Hahn, International Table of Crystallography, vol. A, 5th edn. (2005)

    Google Scholar 

  5. M. Ohta, M. Nakagawa, K. Yasuda, J. Mater. Sci. 25, 5025–5028 (1990)

    Article  ADS  Google Scholar 

  6. O. Gutfleish, J. Lyubina, K.H. Muller, L. Schultz, Adv. Eng. Mater. 7, 208–212 (2005)

    Article  Google Scholar 

  7. Y. Xu, Z.G. Sun, Y. Qiang, D.J. Sellmyer, J. Appl. Phys. 93, 8289–8291 (2003)

    Article  ADS  Google Scholar 

  8. N. Sehdev, R. Medwal, S. Annapoorni, J. Appl. Phys. 110, 033901-1-7 (2011)

    Article  Google Scholar 

  9. T.A. George, R. Skomski, D.J. Sellmyer, J. Appl. Phys. 105, 07B736-1-3 (2009)

    Article  Google Scholar 

  10. N. Sehdev, R. Medwal, S. Annapoorni, J. Alloys Compd. 522, 85–89 (2012)

    Article  Google Scholar 

  11. M. Chen, J. Kim, J.P. Liu, H. Fan, S. Sun, J. Am. Chem. Soc. 128, 7132–7133 (2006)

    Article  Google Scholar 

  12. S. Sun, S. Anders, T. Thomson, J.E.E. Baglin, M.F. Toney, H.F. Hamann, C.B. Murray, B.D. Terris, J. Phys. Chem. B 107, 5419–5425 (2003)

    Article  Google Scholar 

  13. K.E. Elkins, T.S. Vedantam, J.P. Liu, H. Zeng, S. Sun, Y. Ding, Z.L. Wang, Nano Lett. 3, 1647–1649 (2003)

    Article  ADS  Google Scholar 

  14. C.C.Y. Andrew, M. Mizuno, Y. Sasaki, H. Kondo, Appl. Phys. Lett. 85(25), 6242–6244 (2004)

    Article  ADS  Google Scholar 

  15. Y.K. Takahashi, T. Koyama, M. Ohnuma, T. Ohkubo, K. Hono, J. Appl. Phys. 95(5), 2690–2696 (2004)

    Article  ADS  Google Scholar 

  16. A. Martins, M.C.A. Fantini, A.D. Santos, Phys. Status Solidi A 187, 189–193 (2001)

    Article  ADS  Google Scholar 

  17. D. Li, N. Poudyal, V. Nandwana, Z. Jin, K. Elkins, J.P. Liu, J. Appl. Phys. 99, 08E911-1-3 (2006)

    Google Scholar 

  18. A. Capobianchi, S. Laureti, D. Fiorani, S. Foglia, E. Palange, J. Phys. D, Appl. Phys. 43, 474013-1-5 (2010)

    Article  ADS  Google Scholar 

  19. B. Jeyadevan, A. Hobo, K. Urakawa, C.N. Chinnasamy, K. Shinoda, K. Tohji, J. Appl. Phys. 93(10), 7574–7576 (2003)

    Article  ADS  Google Scholar 

  20. M.E. Gruner, G. Rollmann, P. Entel, M. Farle, Phys. Rev. Lett. 100, 087203-1-4 (2008)

    Article  ADS  Google Scholar 

  21. R.M. Wang, O. Dmitrieva, M. Farle, G. Dumpich, H.Q. Ye, H. Poppa, R. Kilaas, C. Kisielowski, Phys. Rev. Lett. 100, 017205-1-4 (2008)

    ADS  Google Scholar 

  22. C.B. Rong, N. Poudyal, G.S. Chaubey, V. Nandwana, Y. Liu, Y.Q. Wu, M.J. Kramer, M.E. Kozlov, R.H. Baughman, J.P. Liu, J. Appl. Phys. 103, 07E131-1-3 (2008)

    Article  Google Scholar 

  23. W.S. Seo, J.H. Lee, X. Sun, Y. Suzuki, D. Mann, Z. Liu, M. Terashima, P.C. Yang, M.V. Mcconnell, D.G. Nishimura, H. Dai, Nat. Mater. 5, 971–976 (2006)

    Article  ADS  Google Scholar 

  24. D. Pohl, F. Schaffel, M.H. Rummeli, E. Mohn, C. Taschner, L. Schultz, C. Kisielowski, B. Rellinghaus, Phys. Rev. Lett. 107, 185501-1-5 (2011)

    Article  ADS  Google Scholar 

  25. H. Zeng, J. Li, J.P. Liu, Z.L. Wang, S. Sun, Nature 420, 395–398 (2002)

    Article  ADS  Google Scholar 

  26. C. Liua, T.J. Klemmera, N. Shuklaa, X. Wua, D. Wellera, M. Tanaseb, D. Laughlinb, J. Magn. Magn. Mater. 266, 96–101 (2003)

    Article  ADS  Google Scholar 

  27. J.F.V. Acker, P.J.W. Weijs, J.C. Fuggle, K. Horn, H. Haak, K.H.J. Buschow, Phys. Rev. B 43(11), 8903–8910 (1991)

    Article  ADS  Google Scholar 

  28. C. Dablemont, P. Lang, C. Mangeney, J.Y. Piquemal, V. Petkov, F. Herbst, G. Viau, Langmuir 24, 5832–5841 (2008)

    Article  Google Scholar 

  29. M. Murugesan, J.C. Bea, C.K. Yin, H. Nohira, E. Ikenaga, T. Hattori, M. Nishijima, T. Fukushima, T. Tanaka, M. Miyao, M. Koyanagi, J. Appl. Phys. 104, 074316-1-5 (2008)

    Article  ADS  Google Scholar 

  30. T. Yamashita, P. Hayes, Appl. Surf. Sci. 254, 2441–2449 (2008)

    Article  ADS  Google Scholar 

  31. T.K. Sham, Y.M. Yiu, M. Kuhn, K.H. Tan, Phys. Rev. B, Condens. Matter 41(17), 11881–11886 (1990)

    Article  ADS  Google Scholar 

  32. N. Tobita, K. Emi, N. Nakajima, H. Maruyama, Y. Miura, M. Higashiguchi, K. Shimada, H. Namatame, M. Taniguchi, J. Magn. Magn. Mater. 310, 1642–1644 (2007)

    Article  ADS  Google Scholar 

  33. H.G. Boyen, K. Fauth, B. Stahl, P. Ziemann, G. Kastle, F. Weigl, F. Banhart, M. Hessler, G. Schutz, N.S. Gajbhiye, J. Ellrich, H. Hahn, M. Buttner, M.G. Garnier, P. Oelhafen, Adv. Mater. 17(5), 574–578 (2005)

    Article  Google Scholar 

  34. B. Stahl, J. Ellrich, R. Theissmann, M. Ghafari, S. Bhattacharya, H. Hahn, N.S. Gajbhiye, D. Kramer, R.N. Viswanath, J. Weissmuller, H. Gleiter, Phys. Rev. B 67, 014422-1-12 (2003)

    Article  ADS  Google Scholar 

  35. Z. Iqbal, S. Vepfek, A.P. Webb, P. Capezzuto, Solid State Commun. 37, 993–996 (1981)

    Article  ADS  Google Scholar 

  36. A.C. Ferrari, Solid State Commun. 143, 47–57 (2007)

    Article  ADS  Google Scholar 

  37. F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53(3), 1126–1130 (1970)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work is supported by funding from the Nanomission, Department of Science and Technology (DST) (SR/NM/NS-45/2007), Government of India. The authors would like to acknowledge Mr. Harsh Kumar and Mr. Rahul Bhardwaj of the University Science Instrumentation Centre, University of Delhi, for helping in the Raman and TEM measurements. The authors would also like to thank Mr. Amit Chauhan, National Physical Laboratory (NPL), Delhi, for the help extended in carrying out the XPS measurements. R.M. and N.S. would like to acknowledge CSIR, India, for giving financial support under the CSIR-SRF scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Annapoorni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medwal, R., Sehdev, N., Govind et al. Electronic states of self stabilized L10 FePt alloy nanoparticles. Appl. Phys. A 109, 403–408 (2012). https://doi.org/10.1007/s00339-012-7080-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7080-6

Keywords

Navigation