Advertisement

Applied Physics A

, Volume 109, Issue 2, pp 497–502 | Cite as

Simulation analysis of the effects of defect density on the performance of p-i-n InGaN solar cell

  • Hossein MovlaEmail author
  • Davood Salami
  • Seyed Vahid Sadreddini
Article

Abstract

This paper indicated a simulation study to optimizing the p-i-n InGaN homojunction solar cells. From the simulation results, it was found that optimized value of cell thickness is 1.3 μm and a maximum energy conversion about 20 % can be achieved in 1015 cm−3 defect concentration. It is shown that i-layer quality is a dominant factor in determining the performance of the cell. This result is consistent with the fact that InGaN p-i-n homojunction solar cell with higher densities of defects and dislocations exhibits a lower J sc and V oc, and consequently lower efficiency of the cell. Simulation results demonstrated that high-quality InGaN alloy is necessary to fabricate a high performance cell.

Keywords

Solar Cell Defect Density Capture Cross Section Multijunction Solar Cell Hole Diffusion Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors gratefully acknowledge to Dr. Marc Burgelman, University of Gent, Belgium, for providing the SCAPS simulation software.

References

  1. 1.
    J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002) ADSCrossRefGoogle Scholar
  2. 2.
    S.-W. Feng, C.-M. Lai, C.-H. Chen, W.-C. Sun, L.-W. Tu, J. Appl. Phys. 108, 093118 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    A. Asgari, K. Khalili, Sol. Energy Mater. Sol. Cells 95, 3124–3129 (2011) CrossRefGoogle Scholar
  4. 4.
    H. Movla, F. Sohrabi, J. Fathi, A. Nikniazi, H. Babaei, K. Khalili, Turk. J. Phys. 34, 97–106 (2010) Google Scholar
  5. 5.
    A. Barnett et al., Prog. Photovolt. 17, 75–83 (2009) CrossRefGoogle Scholar
  6. 6.
    R. Dahal, B. Pantha, J. Li, J.Y. Lin, H.X. Jiang, Appl. Phys. Lett. 94, 063505 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    B.R. Jampana, A.G. Melton, M. Jamil, N.N. Faleev, R.L. Opila, I.T. Ferguson, C.B. Honsberg, IEEE Electron Device Lett. 31, 32–34 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    N.E. Gorji, H. Movla, F. Sohrabi, A. Hosseinpour, M. Rezaei, H. Babaei, Physica E, Low-Dimens. Syst. Nanostruct. 42, 2353 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    M.A. Green, in Proceedings of the Fourth IEEE World Conference on Photovoltaic Energy Conversion, Waikoloa, USA, 7–12 May 2006 (IEEE Press, Piscataway, 2006), p. 15 CrossRefGoogle Scholar
  10. 10.
    A. Luque, A. Marti, Prog. Photovolt. 9, 73 (2001) CrossRefGoogle Scholar
  11. 11.
    H. Movla, N.E. Gorji, F. Sohrabi, A. Hosseinpour, H. Babaei, in Proceeding of the 2th International Conference on Nuclear and Renewable Energy Resources (NURER 2010), Ankara, Turkey, 4–7 July 2010 Google Scholar
  12. 12.
    A. Dmitriev, A. Oruzheinikov, J. Appl. Phys. 86, 3241–3246 (1999) ADSCrossRefGoogle Scholar
  13. 13.
    R. Quay, Gallium Nitride Electronics (Springer, Berlin, Heidelberg, 2008) Google Scholar
  14. 14.
    E. Trybus, G. Namkoong, W. Henderson, S. Burnham, W.A. Doolittle, M. Cheung, A. Cartwright, J. Cryst. Growth 288, 218–224 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    G.F. Brown, J.W. Ager, W. Walukiewicz, J. Wu, Sol. Energy Mater. Sol. Cells 94, 478 (2010) CrossRefGoogle Scholar
  16. 16.
    A. Yamamoto, Md.R. Islam, T.-T. Kang, A. Hashimoto, Phys. Status Solidi C 7, 1309–1316 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    O. Jani, C. Honsberg, A. Asghar, D. Nicol, I. Ferguson, A. Dwliffle, S. Kurtz, in Proceedings of the 31st IEEE PVSC (2005), pp. 37–42 Google Scholar
  18. 18.
    M. Burgelman, P. Nollet, S. Degrave, Thin Solid Films 361–362, 527–532 (2000) CrossRefGoogle Scholar
  19. 19.
    M. Burgelman, J. Verschraegen, S. Degrave, P. Nollet, Prog. Photovolt. 12, 143–153 (2004) CrossRefGoogle Scholar
  20. 20.
    X. Zhang, X.L. Wang, H.L. Xiao, C.B. Yang, J.X. Ran, C.M. Wang, Q.F. Hou, J.M. Li, J. Phys. D, Appl. Phys. 40, 7335 (2007) ADSCrossRefGoogle Scholar
  21. 21.
    Z.Z. Bandi, P.M. Bridger, E.C. Piquette, T.C. McGill, Appl. Phys. Lett. 73, 3276 (1998) ADSCrossRefGoogle Scholar
  22. 22.
    O. Ambacher, W. Rieger, P. Ansmann, H. Angerer, T.D. Moustakas, M. Stutzman, Solid State Commun. 97, 365 (1996) ADSCrossRefGoogle Scholar
  23. 23.
    I. Vurgaftman, J.R. Meyer, J. Appl. Phys. 94, 3675 (2003) ADSCrossRefGoogle Scholar
  24. 24.
    J. Verschraegen, M. Burgelman, Thin Solid Films 515, 6276–6279 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510–520 (1961) ADSCrossRefGoogle Scholar
  26. 26.
    R.A. Street, J. Non-Cryst. Solids 77–78, 1 (1985) CrossRefGoogle Scholar
  27. 27.
    V. Halpern, Philos. Mag., B 54, 473 (1986) CrossRefGoogle Scholar
  28. 28.
    M.E. Levinshtein, S.L. Rumyanstev, M.S. Shur Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (Wiley, New York, 2001) Google Scholar
  29. 29.
    O. Jani, I. Ferguson, C. Honsberg, S. Kurtz, Appl. Phys. Lett. 91, 132117 (2007) ADSCrossRefGoogle Scholar
  30. 30.
    S.J. Fonash, Solar Cell Device Physics, 2nd edn. (Elsevier, San Diego, 2010) Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Hossein Movla
    • 1
    • 2
    Email author
  • Davood Salami
    • 1
  • Seyed Vahid Sadreddini
    • 3
  1. 1.Department of Solid State Physics, Faculty of PhysicsUniversity of TabrizTabrizIran
  2. 2.Azar Aytash Co., Technology IncubatorUniversity of TabrizTabrizIran
  3. 3.Young Researchers Club, Tabriz BranchIslamic Azad UniversityTabrizIran

Personalised recommendations