Applied Physics A

, Volume 109, Issue 1, pp 127–132 | Cite as

Deformation-driven electrical transport in amorphous TiO2 nanotubes

  • A. Asthana
  • T. Shokuhfar
  • Q. Gao
  • P. A. Heiden
  • R. S. Yassar
Article

Abstract

A series of in situ transmission electron microscopy combined with scanning tunneling microscopy measurements were carried out to investigate the effect of mechanical deformation on the electrical transport properties of amorphous TiO2 nanotubes. Under no mechanical straining, it was found that the TiO2 nanotubes behave as electrical insulators. However, the nanotubes show semiconducting behavior under a highly deformed state. On the basis of a metal–semiconductor–metal model, it was suggested that in-shell defects, surface defect-driven conduction modes, are responsible for the appearance of the semiconducting behavior.

References

  1. 1.
    G.K. Mor, O.K. Varghese, M. Paulose, C.A. Grimes, J. Mater. Res. 18, 2588 (2003) ADSCrossRefGoogle Scholar
  2. 2.
    O.K. Varghese, D. Gong, M. Paulose, K.G. Paulose, C.A. Grimes, Sens. Actuators B 93, 338 (2003) CrossRefGoogle Scholar
  3. 3.
    O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, E.C. Dickey, C.A. Grimes, Adv. Mater. 15, 6 (2003) CrossRefGoogle Scholar
  4. 4.
    S. Matsushita, T. Miwa, D.A. Tryk, A. Fujishima, Langmuir 14, 6441 (1998) CrossRefGoogle Scholar
  5. 5.
    B. O’Regan, M. Graetzel, Nature 352, 737 (1991) CrossRefGoogle Scholar
  6. 6.
    M. Adachi, Y. Murata, I. Okada, S. Yoshikawa, J. Electrochem. Soc. 150, 488 (2003) CrossRefGoogle Scholar
  7. 7.
    G. Armstrong, A.R. Armstrong, P.G. Bruce, P. Reale, B. Scrosati, Adv. Mater. 18, 2597 (2006) CrossRefGoogle Scholar
  8. 8.
    G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Nano Lett. 5, 191 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    J. Jiu, S. Isoda, M. Adachi, H. Wang, J. Mater. Sci.: Mater. Electron. 18, 593 (2007) Google Scholar
  10. 10.
    E.S. Kwak, W. Lee, N.G. Park, J. Kim, H. Lee, Adv. Funct. Mater. 19, 1093 (2009) CrossRefGoogle Scholar
  11. 11.
    A. Xu, J. Zhu, Y. Gao, H. Liu, Chem. Res. Chin. Univ. 17, 281 (2001) Google Scholar
  12. 12.
    C. Wang, D.W. Bahnemann, J.K. Dohrmann, Chem. Commun. 16, 1539 (2000) CrossRefGoogle Scholar
  13. 13.
    Y. Wang, Y. Hao, H. Cheng, H. Ma, B. Xu, W. Li, S. Cai, J. Mater. Sci. 34, 2773 (1999) CrossRefGoogle Scholar
  14. 14.
    F. Coloma, F. Marquez, C.H. Rochester, J.A. Anderson, Phys. Chem. Chem. Phys. 2, 5320 (2000) CrossRefGoogle Scholar
  15. 15.
    T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, J. Phys. Chem. Solids 2, 5320 (2002) Google Scholar
  16. 16.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001) CrossRefGoogle Scholar
  17. 17.
    Y.H. Kim, K.J. Chang, S.G. Louie, Phys. Rev. B 63, 2054081 (2001) Google Scholar
  18. 18.
    X. Bai, D. Goldberg, Y. Bando, C. Zhi, C. Tang, M. Mitome, K. Kurashima, Nano Lett. 7, 632 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, Sol. Energy Mater. Sol. Cells 90, 2011 (2006) CrossRefGoogle Scholar
  20. 20.
    B. O’Regan, M. Graetzel, Nature 353, 737 (1991) ADSCrossRefGoogle Scholar
  21. 21.
    G. Wang, H. Chen, H. Zhang, Y. Shen, C. Yuan, Z. Lu, G. Wang, W. Yang, Phys. Lett. A 237, 165 (1998) ADSCrossRefGoogle Scholar
  22. 22.
    Y.K. Lai, L. Sun, C. Chen, C.G. Nie, J. Zuo, C.J. Lin, Appl. Surf. Sci. 252, 1101 (2005) ADSCrossRefGoogle Scholar
  23. 23.
    A. Wahl, J. Augustynski, J. Phys. Chem. B 102, 7820 (1998) CrossRefGoogle Scholar
  24. 24.
    A. Asthana, T. Shokuhfar, Q. Gao, P. Heiden, C. Friedrich, R.S. Yassar, Appl. Phys. Lett. 97, 1 (2010) CrossRefGoogle Scholar
  25. 25.
    T. Shokuhfar, G.K. Arumugam, P.A. Heiden, R.S. Yassar, C. Friedrich, ACS Nano 3, 3098 (2009) CrossRefGoogle Scholar
  26. 26.
    V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin, M. Aucouturier, Surf. Interface Anal. 27, 629 (1999) CrossRefGoogle Scholar
  27. 27.
    V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Electrochim. Acta 45, 921 (1999) CrossRefGoogle Scholar
  28. 28.
    J.M. Macak, K. Sirotna, P. Schmuki, Electrochim. Acta 50, 3679 (2005) CrossRefGoogle Scholar
  29. 29.
    J.M. Macak, H. Tsuchiya, P. Schmuki, Angew. Chem. 117, 2136 (2005) CrossRefGoogle Scholar
  30. 30.
    J.M. Macak, H. Tsuchiya, P. Schmuki, Angew. Chem., Int. Ed. Engl. 44, 2100 (2005) CrossRefGoogle Scholar
  31. 31.
    J.M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, Angew. Chem. 117, 7629 (2005) CrossRefGoogle Scholar
  32. 32.
    J.M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, Angew. Chem., Int. Ed. Engl. 44, 7463 (2005) CrossRefGoogle Scholar
  33. 33.
    T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 14, 3160 (1998) CrossRefGoogle Scholar
  34. 34.
    T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Mater. 11, 1307 (1999) CrossRefGoogle Scholar
  35. 35.
    G.H. Du, Q. Chen, R.C. Che, Z.Y. Yuan, L.M. Peng, Appl. Phys. Lett. 79, 3702 (2001) ADSCrossRefGoogle Scholar
  36. 36.
    Y. Suzuki, S. Yoshikawa, J. Mater. Res. 19, 982 (2004) ADSCrossRefGoogle Scholar
  37. 37.
    J. Bisquert, in Synthesis Properties and Applications of Oxide Nanomaterials, ed. by J.A. Rodriguez, M. Fernandez-Garcia (Wiley, New York, 2007), p. 451 Google Scholar
  38. 38.
    H. Ibach, H. Luth, Solid State Physics: An Introduction to Principles of Material Science (Springer, Berlin, 2003) Google Scholar
  39. 39.
    P. Hofmann, Solid State Physics: An Introduction (Wiley-VCH, Berlin, 2008) MATHGoogle Scholar
  40. 40.
    F.A. Padovani, R. Stratton, Solid-State Electron. 9, 695 (1966) ADSCrossRefGoogle Scholar
  41. 41.
    Z.Y. Zhang, C.H. Jin, X.L. Liang, Q. Chen, L.-M. Peng, Appl. Phys. Lett. 88, 0731021 (2006) Google Scholar
  42. 42.
    Y. Wenli, C.A. Wolden, Thin Solid Films 515, 1708 (2006) ADSCrossRefGoogle Scholar
  43. 43.
    N. Rausch, E.P. Burte, Microelectron. Eng. 19, 725 (1992) CrossRefGoogle Scholar
  44. 44.
    E. Hendry, F. Wang, J. Shan, T.F. Heinz, M. Bonn, Phys. Rev. B 69, 081101 (2004) ADSCrossRefGoogle Scholar
  45. 45.
    M. Stama, G. Lazar, I. Lazar, Rom. J. Phys. 53, 217 (2008) Google Scholar
  46. 46.
    H.Y. Peng, M.D. McCluskey, Y.M. Gupta, M.A. Kneissl, N.M. Johnson, Phys. Rev. B 71, 1152071 (2005) Google Scholar
  47. 47.
    S. Jun, Y.S. Cho, Opt. Express 11, 2769 (2003) ADSCrossRefGoogle Scholar
  48. 48.
    F. Wei, H. Fenglan, J. Dong, Phys. Lett. A 331, 99 (2004) MATHCrossRefGoogle Scholar
  49. 49.
    K. Nishidate, M. Hasegawa, Phys. Rev. B 78, 195403 (2008) ADSCrossRefGoogle Scholar
  50. 50.
    S.D. Mahanti, K. Hoang, S. Ahmad, Physica B 401, 291 (2007) ADSCrossRefGoogle Scholar
  51. 51.
    J. Robertson, O. Sharia, A. Demkov, Appl. Phys. Lett. 91, 132912 (2007) ADSCrossRefGoogle Scholar
  52. 52.
    M. Huang, P. Rugheimer, M.G. Lagally, F. Liu, Phys. Rev. B 72, 085450 (2005) ADSCrossRefGoogle Scholar
  53. 53.
    R.G. Beckenridge, W.R. Hosler, Phys. Rev. 91, 793 (1953) ADSCrossRefGoogle Scholar
  54. 54.
    V.N. Bogomolov, V.P. Zhuze, Sov. Phys., Solid State 5, 2404 (1964) Google Scholar
  55. 55.
    E. Yagi, R.R. Hasiguti, M. Aono, Phys. Rev. B 54, 7945 (1996) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • A. Asthana
    • 1
  • T. Shokuhfar
    • 2
  • Q. Gao
    • 2
  • P. A. Heiden
    • 3
  • R. S. Yassar
    • 2
  1. 1.Department of Materials Science and EngineeringMichigan Technological UniversityHoughtonUSA
  2. 2.Department of Mechanical Engineering–Engineering MechanicsMichigan Technological UniversityHoughtonUSA
  3. 3.Department of ChemistryMichigan Technological UniversityHoughtonUSA

Personalised recommendations