Advertisement

Applied Physics A

, Volume 109, Issue 1, pp 223–232 | Cite as

In vitro studies of PEG thin films with different molecular weights deposited by MAPLE

  • Irina Alexandra Paun
  • Valentin Ion
  • Catalin-Romeo Luculescu
  • Maria DinescuEmail author
  • Stela Canulescu
  • Jørgen Schou
Article

Abstract

In this work, polyethylene glycol (PEG) films were produced by Matrix Assisted Pulsed Laser Evaporation (MAPLE). The possibility to tailor the properties of the films by means of polymer molecular weight was explored. The films of PEG of average molecular weights 400 Da, 1450 Da, and 10000 Da (PEG400, PEG1450, and PEG10000) were investigated in vitro, in media similar with those inside the body (phosphate buffer saline PBS with pH 7.4 and blood). The mass of the polymer did not change during this treatment, but the polymer molecular weight was found to strongly influence the films properties and their behavior in vitro. Thus, immersion in PBS induced swelling of the PEG films, which was more pronounced for PEG polymers of higher molecular weight. Prior to immersion in PBS, the PEG films of higher molecular weight were more hydrophilic, the water contact angles decreasing from ∼66 grd for PEG400 to ∼41 grd for PEG1450 and to ∼15 grd for PEG10000. The same trend was observed during immersion of the PEG films in PBS. Before immersion in PBS, the refractive index of the films increased from ∼1.43 for PEG400 to ∼1.48 for PEG1450 and to ∼1.68 for PEG10000. During immersion in PBS the refractive index decreased gradually, but remained higher for the PEG molecules of higher mass. Finally, blood compatibility tests showed that the PEG films of higher molecular weight were most compatible with blood.

Keywords

PEG10000 Water Contact Angle Polymer Molecular Weight Blood Compatibility Matrix Assisted Pulse Laser Evaporation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by CNCSIS-UEFISCSU (UEFISCDI), project number PN II-RU code PD 146/2010 financing contract number 140/09.08.2010. The authors thank Lotte Nielsen for careful work with the MALDI analysis at DTU. One of the authors, C.L., acknowledges the financial support from POSDRU/89/1.5/S/60746 grant. Partial financial support from the European Commission—7th Framework Programme (FP7-ICT project No. 247868) e-LIFT is gratefully acknowledged.

References

  1. 1.
    S.S. Challa, R. Kumar, Nanomaterials for the Life Sciences. Nanostructured Thin Films and Surfaces, vol. 5 (WILEY-VCH, Weinheim, 2010). GmbH & Co. KGaA, ISBN: 978–3-527–978-3-32155 Google Scholar
  2. 2.
    P. Kingshott, S. McArthur, H. Thissen, D.G. Castner, H.J. Griesser, Biomaterials 23, 4775–4785 (2002) CrossRefGoogle Scholar
  3. 3.
    S. Shi, Y. Xia, X. Ma, S. Jiao, X. Li, Adv. Mater. Res. 11–12, 469–472 (2006) CrossRefGoogle Scholar
  4. 4.
    H. Al-Dubai, G. Oberhofer, V. Kerleta, H.H. Hinterwirth, M. Strobl, F. Gabor, Monatsh. Chem. 141, 485–490 (2010). doi: 10.1007/s00706-010-0284 CrossRefGoogle Scholar
  5. 5.
    J.L. Dalsin, B.-H. Hu, B.P. Lee, P.B. Messersmith, J. Am. Chem. Soc. 125, 4253–4258 (2003) CrossRefGoogle Scholar
  6. 6.
    A. Piqué, in Pulsed laser deposition of thin films: Applications-Led growth of Functional Materials, ed. by R.W. Eason (Wiley-Interscience, New York, 2006), pp. 63–84 CrossRefGoogle Scholar
  7. 7.
    A. Piqué, Appl. Phys. A, Mater. Sci. Process. 105, 517–528 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    D.M. Bubb, B.R. Rigensen, J.H. Callahan, M. Gallcia, A. Vertes, J.S. Horwitz, R.A. McGill, E.J. Houser, K. Wu, A. Piqué, D.B. Chrisey, Appl. Phys. A 73, 121–123 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    K. Rodrigo, J. Schou, B. Toftmann, R. Pedrys, J. Phys. Conf. Ser. 59, 501–504 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    I.A. Paun, V. Ion, A. Moldovan, M. Dinescu, Appl. Phys. Lett. 96, 243702 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    B. Toftmann, K. Rodrigo, J. Schou, R. Pedrys, Appl. Surf. Sci. 247, 211–216 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    B. Ronneberger, W.J. Kao, J.M. Anderson, T. Kissel, J. Biomed. Mater. Res. 30, 31–40 (1996) CrossRefGoogle Scholar
  13. 13.
    N. Scharnagl, S. Lee, B. Hiebl, A. Sisson, A. Lendlein, J. Mater. Chem. 20, 8789 (2010) CrossRefGoogle Scholar
  14. 14.
    G.C. Bucolo, A. Maltese, D. Paolino, M.A. Vandelli, G. Puglisi, V.H. Lee, M. Fresta, Pharm. Res. 20, 584–590 (2003) CrossRefGoogle Scholar
  15. 15.
    J. Wang, C.J. Pan, N. Huang, H. Sun, P. Yang, Y.X. Leng, J.Y. Chen, G.J. Wan, P.K. Chu, Surf. Coat. Technol. 196, 307–311 (2005) CrossRefGoogle Scholar
  16. 16.
    K. Vijayanand, D.K. Pattanayak, T.R. Rama Mohan, R. Banerjee, Trends Biomater. Artif. Organs 18, 73–83 (2005) Google Scholar
  17. 17.
    M. Sigler, T. Paul, R.G. Grabitz, Z. Kardiol. 94, 383–391 (2005) CrossRefGoogle Scholar
  18. 18.
    D.M. Bubb, P.K. Wu, J.S. Horwitz, J.H. Callahan, M. Galicia, A. Vertes, R.A. McGill, E.J. Houser, B.R. Ringeisen, D.B. Chrisey, J. Appl. Phys. 91, 2055–2058 (2002) ADSCrossRefGoogle Scholar
  19. 19.
    K. Rodrigo, B. Toftmann, J. Schou, R. Pedrys, Chem. Phys. Lett. 399, 368–372 (2004) ADSCrossRefGoogle Scholar
  20. 20.
    R.C. Smith, K.S. Baker, Appl. Opt. 20, 177–184 (1981) ADSCrossRefGoogle Scholar
  21. 21.
    S. Holvoet, P. Chevallier, S. Turgeon, D. Mantovani, Materials 3, 1515–1532 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    J.Y. Chen, Y.X. Leng, X.B. Tian, L.P. Wang, N. Huang, P.K. Chu, P. Yang, Biomaterials 23, 2545–2552 (2002) CrossRefGoogle Scholar
  23. 23.
    P. Thanki, E. Dellacherie, J.-L. Six, Appl. Surf. Sci. 253, 2758–2764 (2006) CrossRefGoogle Scholar
  24. 24.
    T.-S. Kim, R.H. Dauskardt, Nano Lett. 10, 1955–1959 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    H. Li, R.J. Hardy, X. Gu, PharmSciTech 9, 437–443 (2008) CrossRefGoogle Scholar
  26. 26.
    S. Lu, K.S. Anseth, Macromolecules 33, 2509–2515 (2000) ADSCrossRefGoogle Scholar
  27. 27.
    S. Das, S. Sarkar, P. Basak, B. Adhikari, J. Sci. Ind. Res. 67, 219–227 (2008) Google Scholar
  28. 28.
    W.-Y. Chuang, T.-H. Young, D.-M. Wang, R.-L. Luo, Y.-M. Sun, Polymer 41, 8339–8347 (2000) CrossRefGoogle Scholar
  29. 29.
    J. Tamayo, R. Garcıa, Langmuir 12, 4430–4435 (1996) CrossRefGoogle Scholar
  30. 30.
    R. Garcia, J. Tamayo, A. San Paulo, Surf. Interface Anal. 27, 312–316 (1999) CrossRefGoogle Scholar
  31. 31.
    J.V. Ford, B.G. Sumpter, D.W. Noid, M.D. Barnes, J.U. Otaigbe, Appl. Phys. Lett. 77(16), 2515–2517 (2000) ADSCrossRefGoogle Scholar
  32. 32.
    H. Fujiwara, Spectroscopic Ellipsometry Principles and Applications (Maruzen, Tokyo, 2007) Google Scholar
  33. 33.
    I.A. Paun, A. Moldovan, C.R. Luculescu, M. Dinescu, Appl. Surf. Sci. 257, 10780–10788 (2011) ADSCrossRefGoogle Scholar
  34. 34.
    H. Richardson, Í. López-García, M. Sferrazza, J.L. Keddie, Phys. Rev. E 70, 051805 (2004) ADSCrossRefGoogle Scholar
  35. 35.
    Y. Duan, Y. Nie, T. Gong, Q. Wang, Z. Zhang, J. Appl. Polym. Sci. 100, 1019–1023 (2006) CrossRefGoogle Scholar
  36. 36.
    B. Zhu, T. Eurell, R. Gunawan, D. Leckband, J. Biomed. Mater. Res. 56, 406–416 (2001) CrossRefGoogle Scholar
  37. 37.
    C.L. Fen, A. Embrechts, I. Bredebusch, A. Bouma, J. Schnekenburger, M. García-Parajó, W. Domschke, G.J. Vancso, H. Schonherr, Eur. Polym. J. 43, 2177–2190 (2007) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Irina Alexandra Paun
    • 1
    • 2
  • Valentin Ion
    • 1
    • 4
  • Catalin-Romeo Luculescu
    • 1
  • Maria Dinescu
    • 1
    Email author
  • Stela Canulescu
    • 3
  • Jørgen Schou
    • 3
  1. 1.National Institute for Laser, Plasma and Radiation PhysicsMagurele, BucharestRomania
  2. 2.Faculty of Applied SciencesUniversity Politehnica of BucharestBucharestRomania
  3. 3.DTU Fotonik, Risø CampusTechnical University of DenmarkRoskildeDenmark
  4. 4.Faculty of PhysicsUniversity of BucharestMagureleRomania

Personalised recommendations