Applied Physics A

, Volume 108, Issue 3, pp 537–544 | Cite as

Investigation of the characteristics of heat current in a nanofluid based on molecular dynamics simulation

Article

Abstract

Molecular dynamics simulation of nanofluid system composed of argon liquid and copper nanoparticle was carried out in this paper. To ensure the interatomic force gradually decreases to zero at the cut-off distance, Stoddard and Ford potential function was employed. Green–Kubo method was used to obtain the thermal conductivity. The characteristics of the heat current were measured by its mean value, variance, third moment, and the Shannon entropy. It was found that the thermal conductivity increases as the nanoparticle volume fraction increases, and so do the variance and the Shannon entropy of the heat current. The third moment of the heat current was almost zero, indicating that the probability distribution of the heat current is nearly symmetric about its mean value. Autocorrelation and partial autocorrelation functions of the heat current were used to investigate the correlation between the discrete heat current value and different lags.

References

  1. 1.
    N. Sankar, N. Mathew, C.B. Sobhan, Molecular dynamics modeling of thermal conductivity enhancement in metal nanoparticle suspensions. Int. Commun. Heat Mass Transf. 35, 867–872 (2008) CrossRefGoogle Scholar
  2. 2.
    S. Maruyama, Molecular dynamics method for microscale heat transfer. Adv. Numer. Heat Transf. 2, 189–226 (2000) MathSciNetGoogle Scholar
  3. 3.
    E. Spohr, K. Heinzinger, A molecular dynamics study on the water/metal interfacial potential. J. Phys. Chem. 92, 1358–1363 (1988) CrossRefGoogle Scholar
  4. 4.
    C.Z. Sun, W.Q. Lu, J. Liu, B.F. Bai, Molecular dynamics simulation of nanofluid’s effective thermal conductivity in high-shear-rate Couette flow. Int. J. Heat Mass Transf. 54, 2560–2567 (2011) MATHCrossRefGoogle Scholar
  5. 5.
    L. Li, Y.W. Zhang, H.B. Ma, M. Yang, Molecular dynamics simulation of effect of liquid layering around the nanoparticle on the enhanced thermal conductivities of nanofluids. J. Nanopart. Res. 12, 811 (2009) CrossRefGoogle Scholar
  6. 6.
    V.Y. Rudyak, A.A. Belkin, E.A. Tomilina, On the thermal conductivity of nanofluids. Tech. Phys. Lett. 36, 660–662 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    H.B. Kang, Y.W. Zhang, M. Yang, Molecular dynamics simulation of thermal conductivity of Cu–Ar nanofluid using EAM potential for Cu–Cu interactions. Appl. Phys. A, Mater. Sci. Process. 103, 1001–1008 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    D. Stoddard, J. Ford, Numerical experiments on the stochasitc behavior of a Lennard–Jones gas system. Phys. Rev. A 8, 1504–1572 (1973) ADSCrossRefGoogle Scholar
  9. 9.
    S.U.S. Choi, Nanofluids from vision to reality through research. J. Heat Transf. 131, 033106 (2009) CrossRefGoogle Scholar
  10. 10.
    A. Ghadimi, R. Saidur, H.S.C. Metselaar, A review of nanofluid stability properties and characterization in stationary conditions. Int. J. Heat Mass Transf. 54, 4051–4068 (2011) CrossRefGoogle Scholar
  11. 11.
    P. Keblinski, R. Prasher, J. Eapen, Thermal conductance of nanofluids: Is the controversy over? J. Nanopart. Res. 10, 1089–1097 (2008) CrossRefGoogle Scholar
  12. 12.
    L.Q. Wang, X.H. Wei, Nanofluids, synthesis, heat conduction, and extension. J. Heat Transf. 131, 033102 (2009) CrossRefGoogle Scholar
  13. 13.
    D.H. Kumar, H.E. Patel, V.R. Kumar, T. Sundararajan, T. Pradeep, S. Kumar Das, Model for heat conduction in nanofluids. Phys. Rev. Lett. 93, 144301 (2004) ADSCrossRefGoogle Scholar
  14. 14.
    S. Bastea, Comment on “Model for heat conduction in nanofluid”. Phys. Rev. Lett. 95, 019401 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    W. Evans, J. Fish, P. Keblinski, Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl. Phys. Lett. 88, 093116 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    R.P. Selvam, S. Sarkar, Equilibrium molecular dynamics simulation study on the effect of nanoparticle loading and size on thermal conductivity of nanofluids, in Proceedings of the HT ASME–JSME Thermal Engineering Summer Heat Transfer Conference (2007), pp. 293–301 CrossRefGoogle Scholar
  17. 17.
    Y. Yang, Z.G. Zhang, E.A. Grulke, W.B. Anderson, G. Wu, Heat transfer properties of nanoparticle-in-fluid dispersion (nanofluids) in laminar flow. Int. J. Heat Mass Transf. 48, 1107–1116 (2005) CrossRefGoogle Scholar
  18. 18.
    M. Mahmoodi, Numerical simulation of free convection of a nanofluid in L-shaped cavities. Int. J. Therm. Sci. 50, 1731–1740 (2011) CrossRefGoogle Scholar
  19. 19.
    L.S. Sundar K.V. Sharma, Heat transfer enhancements of low volume concentration Al2O3 nanofluid next term and with longitudinal strip inserts in a circular tube. Int. J. Heat Mass Transf. 53, 4280–4286 (2010) CrossRefGoogle Scholar
  20. 20.
    M. Moghaddami, A. Mohammadzade, S.A.V. Esfehani, Second law analysis of nanofluid flow. Energy Convers. Manag. 52, 1397–1405 (2011) CrossRefGoogle Scholar
  21. 21.
    S. Jain, H.E. Patel, S. Kumar Das, Brownian dynamic simulation for the prediction of effective thermal conductivity of nanofluid. J. Nanopart. Res. 11, 767–773 (2009) CrossRefGoogle Scholar
  22. 22.
    J. Eapen, J. Li, S. Yip, Mechanism of thermal transport in dilute nanocolloids. Phys. Rev. Lett. 98, 028302 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    S. Mirmasoumi, A. Behzadmehr, Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube. Int. J. Heat Fluid Flow 29, 557–566 (2008) CrossRefGoogle Scholar
  24. 24.
    D. Lelea, The performance evaluation of Al2O3–water nanofluid flow and heat transfer in microchannel heat sink. Int. J. Heat Mass Transf. 54, 3891–3899 (2011) MATHCrossRefGoogle Scholar
  25. 25.
    S.M. You, J.H. Kim, Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl. Phys. Lett. 83, 3374–3376 (2003) ADSCrossRefGoogle Scholar
  26. 26.
    C.T. Nguyen, N. Galanis, G. Polidori, S. Fohanno, C.V. Popa, A.L. Bechec, An experimental study of a confined and submerged impinging jet heat transfer using Al2O3–water nanofluid. Int. J. Therm. Sci. 48, 401–411 (2009) CrossRefGoogle Scholar
  27. 27.
    C.J. Ho, W.K. Liu, Y.S. Chang, C.C. Lin, Natural convection heat transfer of alumina–water nanofluid in vertical square enclosures: an experimental study. Int. J. Therm. Sci. 49, 1345–1353 (2010) CrossRefGoogle Scholar
  28. 28.
    E. Abu-Nada, Z. Masoud, A. Hijazi, Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. Int. Commun. Heat Mass Transf. 35, 657–665 (2008) CrossRefGoogle Scholar
  29. 29.
    P.K. Schelling, S.R. Phillpot, P. Keblinski, Comparison of atomic-level simulation methods for computing thermal conductivity. Phys. Rev. B, Condens. Matter 65, 144306 (2002) ADSCrossRefGoogle Scholar
  30. 30.
    C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 79–423 (1948) MathSciNetGoogle Scholar
  31. 31.
    J. Wu, J.S. Sun, L. Liang, Y.C. Zha, Determination of weights for ultimate cross efficiency using Shannon entropy. Expert Syst. Appl. 38, 5162–5165 (2011) CrossRefGoogle Scholar
  32. 32.
    W. Liu, J. Wan, M. Cahay, V. Gasparian, Properties of the Shannon entropy of arrays of elastic scatterers. Physica E 42, 1520–1530 (2010) ADSCrossRefGoogle Scholar
  33. 33.
    M.L. Menendez, Shannon’s entropy in exponential families: Statistical applications. Appl. Math. Lett. 13, 37–42 (2007) MathSciNetCrossRefGoogle Scholar
  34. 34.
    D.C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 1995) Google Scholar
  35. 35.
    J.C. Maxwell, Electricity and Magnetism (Clarendon, Oxford, 1873) Google Scholar
  36. 36.
    W.S. William, Time Series Analysis: Univariate and Multivariate Methods, 2nd edn. (Pearson Education, Upper Saddle River, 2004) Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of MissouriColumbiaUSA

Personalised recommendations