Applied Physics A

, Volume 108, Issue 4, pp 921–928 | Cite as

Optical and current transport properties of CuO/ZnO nanocoral p–n heterostructure hydrothermally synthesized at low temperature

  • A. Zainelabdin
  • S. Zaman
  • G. Amin
  • O. Nur
  • M. Willander
Article

Abstract

We demonstrate the synthesis and investigate the electrical and optical characteristics of ‘nanocorals’ (NCs) composed of CuO/ZnO grown at low temperature through the hydrothermal approach. High-density CuO nanostructures (NSs) were selectively grown on ZnO nanorods (NRs). The synthesized NCs were used to fabricate p–n heterojunctions that were investigated by the current density–voltage (JV) and the capacitance–voltage (CV) techniques. It was found that the NC heterojunctions exhibit a well-defined diode behavior with a threshold voltage of about 1.52 V and relatively high rectification factor of ∼760. The detailed forward JV characteristics revealed that the current transport is controlled by an ohmic behavior for V≤0.15 V, whereas at moderate voltages 1.46≤V<1.5 the current follows a Jα exp(βV) relationship. At higher voltages (≥1.5 V) the current follows the relation JαV 2, indicating that the space-charge-limited current mechanism is the dominant current transport. The CV measurement indicated that the NC diode has an abrupt junction. The grown CuO/ZnO NCs exhibited a broad light absorption range that is covering the UV and the entire visible parts of the spectrum.

References

  1. 1.
    O.V. Kharissova, B.I. Kharisov, Ind. Eng. Chem. Res. 49, 11142 (2010) CrossRefGoogle Scholar
  2. 2.
    Q. Zhang, S.J. Liu, S.H. Yu, J. Mater. Chem. 19, 191 (2009) CrossRefGoogle Scholar
  3. 3.
    S. Ilican, M. Caglar, Y. Caglar, Appl. Surf. Sci. 256, 7204 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    K. Ando, H. Saito, Z.W. Jin, T. Fukumura, M. Kawasaki, Y. Matsumoto, H. Koinuma, J. Appl. Phys. 89, 7284 (2001) ADSCrossRefGoogle Scholar
  5. 5.
    P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring, Nat. Mater. 2, 673 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    Z.L. Wang, J.H. Song, Science 312, 242 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    R. Ghosh, S. Fujihara, D. Basak, J. Electron. Mater. 35, 1728 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    J.Y. Park, D.E. Song, S.S. Kim, Nanotechnology 19, 105503 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    M.H. Asif, A. Fulati, O. Nur, M. Willander, C. Brannmark, P. Stralfors, S.I. Borjesson, F. Elinder, Appl. Phys. Lett. 95, 023703 (2009) CrossRefGoogle Scholar
  10. 10.
    Z.L. Wang, J. Phys., Condens. Matter 16, R829 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    A. Zainelabdin, S. Zaman, G. Amin, O. Nur, M. Willander, Cryst. Growth Des. 10, 3250 (2010) CrossRefGoogle Scholar
  12. 12.
    G. Amin, S. Zaman, A. Zainelabdin, O. Nur, M. Willander, Phys. Status Solidi R 5, 71 (2011) CrossRefGoogle Scholar
  13. 13.
    Y.W. Zhu, T. Xu, F.C. Cheong, X.J. Xu, C.T. Lim, V.B.C. Tan, J.T.L. Thong, C.H. Sow, Nanotechnology 16, 88 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    F. Teng, W. Yao, Y. Zheng, Y. Ma, Y. Teng, T. Xu, S. Liang, Y. Zhu, Sens. Actuators B, Chem. 134, 761 (2008) CrossRefGoogle Scholar
  15. 15.
    X.Y. Xue, L.L. Xing, Y.J. Chen, S.L. Shi, Y.G. Wang, T.H. Wang, J. Phys. Chem. C 112, 12157 (2008) CrossRefGoogle Scholar
  16. 16.
    M. Abaker, A. Umar, S. Baskoutas, S.H. Kim, S.W. Hwang, J. Phys. D, Appl. Phys. 44, 155405 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    H.L. Xu, W.Z. Wang, W. Zhu, L. Zhou, M.L. Ruan, Cryst. Growth Des. 7, 2720 (2007) CrossRefGoogle Scholar
  18. 18.
    C.H. Lu, L.M. Qi, J.H. Yang, D.Y. Zhang, N.Z. Wu, J.M. Ma, J. Phys. Chem. B 108, 17825 (2004) CrossRefGoogle Scholar
  19. 19.
    B. Liu, H.C. Zeng, J. Am. Chem. Soc. 126, 8124 (2004) CrossRefGoogle Scholar
  20. 20.
    L. Zhu, Y. Chen, Y. Zheng, N. Li, J. Zhao, Y. Sun, Mater. Lett. 64, 976 (2010) CrossRefGoogle Scholar
  21. 21.
    D. Li, Y.H. Leung, A.B. Djurisic, Z.T. Liu, M.H. Xie, J. Gao, W.K. Chan, J. Cryst. Growth 282, 105 (2005) ADSCrossRefGoogle Scholar
  22. 22.
    G. Uozumi, M. Miyayama, H. Yanagida, J. Mater. Sci. 32, 2991 (1997) CrossRefGoogle Scholar
  23. 23.
    J.D. Choi, G.M. Choi, Sens. Actuators B, Chem. 69, 120 (2000) CrossRefGoogle Scholar
  24. 24.
    D.H. Yoon, J.H. Yu, G.M. Choi, Sens. Actuators B, Chem. 46, 15 (1998) CrossRefGoogle Scholar
  25. 25.
    K.K. Baek, H.L. Tuller, Solid State Ion. 75, 179 (1995) CrossRefGoogle Scholar
  26. 26.
    S.J. Jung, H. Yanagida, Sens. Actuators B, Chem. 37, 55 (1996) CrossRefGoogle Scholar
  27. 27.
    S. Mridha, D. Basak, Semicond. Sci. Technol. 21, 928 (2006) ADSCrossRefGoogle Scholar
  28. 28.
    Y. Zhu, C.H. Sow, T. Yu, Q. Zhao, P. Li, Z. Shen, D. Yu, J.T.L. Thong, Adv. Funct. Mater. 16, 2415 (2006) CrossRefGoogle Scholar
  29. 29.
    S. Jung, S. Jeon, K. Yong, Nanotechnology 22, 015606 (2011) ADSCrossRefGoogle Scholar
  30. 30.
    Z. Guo, X. Chen, J. Li, J.H. Liu, X.J. Huang, Langmuir 27, 6193 (2011) CrossRefGoogle Scholar
  31. 31.
    C. Pacholski, A. Kornowski, H. Weller, Abstr. Pap. Am. Chem. Soc. 224, U351 (2002) Google Scholar
  32. 32.
    D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, Hoboken, 2005) CrossRefGoogle Scholar
  33. 33.
    D.C. Kim, W.S. Han, H.K. Cho, B.H. Kong, H.S. Kim, Appl. Phys. Lett. 91, 231901 (2007) ADSCrossRefGoogle Scholar
  34. 34.
    P. Klason, O. Nur, M. Willander, Nanotechnology 19, 415708 (2008) CrossRefGoogle Scholar
  35. 35.
    J.D. Ye, S.L. Gu, S.M. Zhu, W. Liu, S.M. Liu, R. Zhang, Y. Shi, Y.D. Zheng, Appl. Phys. Lett. 88, 182112 (2006) ADSCrossRefGoogle Scholar
  36. 36.
    N.K. Reddy, Q. Ahsanulhaq, J.H. Kim, Y.B. Hahn, Appl. Phys. Lett. 92, 043127 (2008) ADSCrossRefGoogle Scholar
  37. 37.
    J.A. Edmond, K. Das, R.F. Davis, J. Appl. Phys. 63, 922 (1988) ADSCrossRefGoogle Scholar
  38. 38.
    R.L. Hoffman, J.F. Wager, M.K. Jayaraj, J. Tate, J. Appl. Phys. 90, 5763 (2001) ADSCrossRefGoogle Scholar
  39. 39.
    M.A. Lampert, P. Mark, Current Injection in Solids (Academic Press, New York, 1970) Google Scholar
  40. 40.
    M. Haase, H. Weller, A. Henglein, J. Phys. Chem. 92, 482 (1988) CrossRefGoogle Scholar
  41. 41.
    P.S. Nayar, J. Appl. Phys. 53, 1069 (1982) ADSCrossRefGoogle Scholar
  42. 42.
    Z. Guo, D.X. Zhao, Y.C. Liu, D.Z. Shen, J.Y. Zhang, B.H. Li, Appl. Phys. Lett. 93, 163501 (2008) ADSCrossRefGoogle Scholar
  43. 43.
    F.P. Koffyberg, F.A. Benko, J. Appl. Phys. 53, 1173 (1982) ADSCrossRefGoogle Scholar
  44. 44.
    M.T.S. Nair, L. Guerrero, O.L. Arenas, P.K. Nair, Appl. Surf. Sci. 150, 143 (1999) ADSCrossRefGoogle Scholar
  45. 45.
    S.C. Ray, Sol. Energy Mater. Sol. Cells 68, 307 (2001) CrossRefGoogle Scholar
  46. 46.
    F. Marabelli, G.B. Parravicini, F. Salghettidrioli, Phys. Rev. B 52, 1433 (1995) ADSCrossRefGoogle Scholar
  47. 47.
    R.V. Pisarev, V.V. Pavlov, A.M. Kalashnikova, A.S. Moskvin, Phys. Rev. B 82, 224502 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • A. Zainelabdin
    • 1
  • S. Zaman
    • 1
  • G. Amin
    • 1
  • O. Nur
    • 1
  • M. Willander
    • 1
  1. 1.Department of Science and TechnologyLinköping UniversityNorrköpingSweden

Personalised recommendations