Applied Physics A

, Volume 108, Issue 3, pp 751–759 | Cite as

In vitro and in vivo biocompatibility study on laser 3D microstructurable polymers

  • Mangirdas Malinauskas
  • Daiva Baltriukiene
  • Antanas Kraniauskas
  • Paulius Danilevicius
  • Rasa Jarasiene
  • Raimondas Sirmenis
  • Albertas Zukauskas
  • Evaldas Balciunas
  • Vytautas Purlys
  • Roaldas Gadonas
  • Virginija Bukelskiene
  • Vytautas Sirvydis
  • Algis Piskarskas


Films and microstructured scaffolds have been fabricated using direct laser writing out of different polymers: hybrid organic-inorganic ORMOCORE b59, acrylate-based AKRE23, novel organic-inorganic Zr containing hybrid SZ2080, and biodegradable PEG-DA-258. Adult myogenic stem cells were grown on these surfaces in vitro. Their adhesion, growth, and viability test results suggest good potential applicability of the materials in biomedical practice. Pieces of these polymers were implanted in rat’s paravertebral back tissue. Histological examination of the implants and surrounding tissue ex vivo after 3 weeks of implantation was conducted and results show the materials to be at least as biocompatible as surgical clips or sutures. The applied direct laser writing technique seems to offer good future prospects in a polymeric 3D scaffold design for artificial tissue engineering with autologous stem cells.


Adult Stem Cell Monocyte Count Direct Laser Write Biocompatibility Test Femtosecond Laser Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Lithuanian Science Council grant MIP-10344 (Creation of Artificial Tissues for Regenerative Medicine). Domas Paipulas and Gabija Bickauskaite (VU LRC) are acknowledged for image digital processing and proofreading.


  1. 1.
    A. Charruyer, R. Ghadially, Stem cells and tissue-engineered skin. Skin Pharmacol. Physiol. 22(2), 55–62 (2009) CrossRefGoogle Scholar
  2. 2.
    W.-H. Zimmermann, I.M.T. Eschenhagen, Engineered heart tissue for regeneration of diseased hearts. Biomaterials 25(9), 1639–1647 (2004). Animal Models for Tissue Engineering Applications CrossRefGoogle Scholar
  3. 3.
    A. Mantesso, P. Sharpe, Dental stem cells for tooth regeneration and repair. Expert Opin. Biol. Ther. 9(9), 1143–1154 (2009) CrossRefGoogle Scholar
  4. 4.
    A. Subramaniana, U. Krishnan, S. Sethuraman, Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration. J. Biomed. Sci. 16(1), 108 (2009) CrossRefGoogle Scholar
  5. 5.
    A. Atala, Tissue engineering, stem cells, and cloning for the regeneration of urologic organs. Clin. Plast. Surg. 30(4), 649–667 (2002) CrossRefGoogle Scholar
  6. 6.
    J. Ringe, C. Kaps, G.-R. Burmester, M. Sittinger, Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Naturwissenschaften 89, 338–351 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    O. Fisher, A. Khademhosseini, R. Langer, N. Peppas, Bioinspired materials for controlling stem cell fate. Acc. Chem. Res. 43(3), 419–428 (2010) CrossRefGoogle Scholar
  8. 8.
    X. Liu, P. Ma, Polymeric scaffolds for bone tissue engineering. Ann. Biomed. Eng. 32(3), 477–486 (2004) CrossRefGoogle Scholar
  9. 9.
    V. Tsang, S. Bhatia, Three-dimensional tissue fabrication. Adv. Drug Deliv. Rev. 56, 1635–1647 (2004) CrossRefGoogle Scholar
  10. 10.
    D. Howard, L. Buttery, K. Shakesheff, S. Roberts, Tissue engineering: strategies, stem cells, and scaffolds. J. Anat. 213, 66–72 (2008) Google Scholar
  11. 11.
    T. Hodgkinson, X. Yuan, A. Bayat, Adult stem cells in tissue engineering. Expert Rev. Med. Devices 6(6), 621–640 (2009) CrossRefGoogle Scholar
  12. 12.
    Y.-C. Kuo, S.-N. Leou, Chondrogenesis of articular chondrocytes in hydroxyapatite/chitin/chitosan scaffolds supplemented with pituitary extract. Eng. Life Sci. 10, 65–74 (2010) CrossRefGoogle Scholar
  13. 13.
    T. Qian, Y. Wang, Micro/nano-fabrication technologies for cell biology. Med. Biol. Eng. Comput. 48(10), 1023–1032 (2010) CrossRefGoogle Scholar
  14. 14.
    C. Metallo, J. Mohr, C. Detzel, J. de Pablo, B.V. Wie, S. Palecek, Engineering the stem cell microenvironment. Biotechnol. Prog. 23, 18–23 (2007) CrossRefGoogle Scholar
  15. 15.
    D. Meredith, L. Eschbach, M. Riehle, A. Curtis, R. Richards, Microtopography of metal surfaces influence fibroblast growth by modifying cell shape, cytoskeleton, and adhesion. J. Ortop. Res. 25, 1523–1533 (2007) CrossRefGoogle Scholar
  16. 16.
    D. Falconnet, G. Csucs, H. Grandin, M. Textor, Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27(16), 3044–3063 (2006) CrossRefGoogle Scholar
  17. 17.
    Q. Xu, H. Lu, J. Zhang, G. Lu, Z. Deng, Tissue engineering scaffold material of porous nanohydroxyapatite/polyamide. Int. J. Nanomed. 66(5), 331–335 (2010) Google Scholar
  18. 18.
    P. Tayalia, C. Mendonca, T. Baldacchini, D. Mooney, E. Mazur, Three-dimensional biodegradable structures fabricated by two-photon polymerization. Adv. Mater. 20(23), 4494–4498 (2008) CrossRefGoogle Scholar
  19. 19.
    A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, B. Chichkov, Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials. J. Tissue Eng. Regen. Med. 1, 443–449 (2008) CrossRefGoogle Scholar
  20. 20.
    F. Claeyssens, E. Hasan, A. Gaidukevičiutė, D. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikova, X. Shizhou, C. Fotakis, M. Vamvakaki, B. Chichkov, M. Farsari, Three-dimensional biodegradable structures fabricated by two-photon polymerization. Langmuir 25(5), 3219–3223 (2009) CrossRefGoogle Scholar
  21. 21.
    T. Weiß, G. Hildebrand, R. Schade, K. Liefeith, Two-photon polymerization for microfabrication of three-dimensional scaffolds for tissue engineering application. Eng. Life Sci. 9(5), 384–390 (2009) CrossRefGoogle Scholar
  22. 22.
    M. Malinauskas, V. Purlys, M. Rutkauskas, R. Gadonas, Two-photon polymerization for fabrication of three-dimensional micro and nanostructures over a large area. Proc. SPIE 7204, 7204C (2009) ADSGoogle Scholar
  23. 23.
    S. Gittard, R. Narayan, J. Lusk, P. Morel, F. Stockmans, M. Ramsey, C. Laverde, J. Phillips, N. Monteiro-Riviere, A. Ovsianikov, B. Chichkov, Rapid prototyping of scaphoid and lunate bones. Biotechnol. J. 4, 129–134 (2009) CrossRefGoogle Scholar
  24. 24.
    J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, M. Spitzbart, Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography. J. Micromech. Microeng. 18, 125014 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    D. Cumming, S. Thoms, S. Beaumont, J. Weaver, Fabrication of 3 nm wires using 100 keV electron beam lithography and poly(methyl methacrylate) resist. Appl. Phys. Lett. 68(3), 322–324 (1996) ADSCrossRefGoogle Scholar
  26. 26.
    W. Chen, H. Ahmed, Fabrication of 5–7 nm wide etched lines in silicon using 100 keV electron-beam lithography and polymethylmethacrylate resist. Appl. Phys. Lett. 62(13), 1499–1501 (1993) ADSCrossRefGoogle Scholar
  27. 27.
    C. Schizas, V. Melissinaki, A. Gaidukevičiutė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, D. Karalekas, On the design and fabrication by two-photon polymerization of a readily assembled micro-valve. Int. J. Adv. Manuf. Technol. 48(5), 435–441 (2010) CrossRefGoogle Scholar
  28. 28.
    M. Malinauskas, P. Danilevičius, D. Baltriukienė, M. Rutkauskas, A. Žukauskas, Ž. Kairytė, G. Biċkauskaitė, V. Purlys, D. Paipulas, V. Bukelskienė, R. Gadonas, 3d artificial polymeric scaffolds for stem cell growth fabricated by femtosecond laser. Lith. J. Phys. 50(1), 75–82 (2010) CrossRefGoogle Scholar
  29. 29.
    S. Passinger, A. Ovsianikov, R. Kiyan, C. Reinhardt, A. Ostendorf, B. Chichkov, Two-photon polymerization for industrial applications, in Proc. LPM (2008) Google Scholar
  30. 30.
    M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiu̧tė, R. Gadonas, Femtosecond visible light induced two-photon photopolymerization for 3d micro/nanostructuring in photoresists and photopolymers. Lith. J. Phys. 50(2), 201–207 (2010) CrossRefGoogle Scholar
  31. 31.
    M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, S. Juodkazis, Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses. Opt. Express 18(10), 10209–10221 (2010) ADSCrossRefGoogle Scholar
  32. 32.
    M. Malinauskas, A. Žukauskas, G. Biċkauskaitė, M. Rutkauskas, K. Belazaras, H. Gilbergs, P. Danilevičius, V. Purlys, D. Paipulas, T. Gertus, R. Gadonas, A. Piskarskas, D. Baltriukienė, V. Bukelskienė, A. Gaidukevičiūtė, Fabrication of three-dimensional nanostructures by laser polymerization technique, in Proc. CYSENI 2010, pp. 354–366 (2010) Google Scholar
  33. 33.
    M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, R. Gadonas, Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption. Lith. J. Phys. 50, 135–140 (2010) CrossRefGoogle Scholar
  34. 34.
    A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, C. Fotakis, Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano 2(11), 2257–2262 (2008) CrossRefGoogle Scholar
  35. 35.
    A. Ovsianikov, A. Gaidukevičiutė, B. Chichkov, M. Oubaha, B.D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M.F.C. Fotakis, Two-photon polymerization of hybrid sol-gel materials for photonics applications. Laser Chem. 2008, 1–7 (2008) CrossRefGoogle Scholar
  36. 36.
    M. Farsari, M. Vamvakaki, B. Chichkov, Multiphoton polymerization of hybrid materials. J. Opt. (2010). doi: 10.1088/2040-8978/12/12/124001 Google Scholar
  37. 37.
    K. Gonsalves, L. Merhari, H. Wu, Y. Hu, Organic-inorganic nanocomposites: Unique resists for nanolithography. Adv. Mater. 13(10), 703–714 (2001) CrossRefGoogle Scholar
  38. 38.
    L. Almany, D. Seliktar, Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3d cell cultures. Biomaterials 26, 2467–2477 (2005) CrossRefGoogle Scholar
  39. 39.
    S. Gabler, J. Stampf, T. Koch, S. Seidler, G. Schuller, H. Redl, V. Juras, S. Trattnig, R. Weidisch, Determination of the viscoelastic properties of hydrogels based on polyethylene glycol diacrylate(peg-da) and human articular cartilage. Int. J. Mater. Eng. Innov. 1(1), 3–20 (2009) CrossRefGoogle Scholar
  40. 40.
    M. Hahn, J. Miller, J. West, Three-dimensional biochemical and biomechanical patterning ofhydrogels for guiding cell behavior. Adv. Mater. 18(20), 2679–2684 (2006) CrossRefGoogle Scholar
  41. 41.
    R. Marchal, E. Nicolau, J.-P. Ballaguet, F. Bertoncini, Biodegradability of polyethylene glycol 400 by complex microfloras. Int. Biodeterior. Biodegrad. 62, 384–390 (2008) CrossRefGoogle Scholar
  42. 42.
    A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Lobler, K. Sternberg, K. Schmitz, A. Haverich, Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications. Acta Biomater. 7(3), 967–974 (2010) CrossRefGoogle Scholar
  43. 43.
  44. 44.
  45. 45.
    A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, R. Gadonas, Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique. Lith. J. Phys. 50(11), 55–61 (2010) CrossRefGoogle Scholar
  46. 46.
    S. Costantino, K. Heinze, O. Martínez, P.D. Koninck, P. Wiseman, Two-photon fluorescent microlithography for live-cell imaging. Microsc. Res. Tech. 68(5), 272–276 (2005) CrossRefGoogle Scholar
  47. 47.
    H.-B. Sun, T. Tanaka, K. Takada, S. Kawata, Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes. Appl. Phys. Lett. 79(10), 1411 (2001) ADSCrossRefGoogle Scholar
  48. 48.
  49. 49.
    J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, S. Kawata, Multiple-spot parallel processing for laser micronanofabrication. Appl. Phys. Lett. 86(4), 044102 (2005) ADSCrossRefGoogle Scholar
  50. 50.
    C. LaFratta, L. Li, J. Fourkas, Soft-lithographic replication of 3d microstructures with closed loops. Proc. Natl. Acad. Sci. USA 103(23), 8589–8594 (2006) ADSCrossRefGoogle Scholar
  51. 51.
    A. Seidel, C. Ohrt, S. Passinger, C. Reinhardt, R. Kiyan, B. Chichkov, Nanoimprinting of dielectric loaded surface-plasmon-polariton waveguides using masters fabricated by 2-photon polymerization technique. J. Opt. Soc. Am. B 26(4), 810–812 (2009) ADSCrossRefGoogle Scholar
  52. 52.
    Y. Xia, G. Whitesides, Sof-lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998) ADSCrossRefGoogle Scholar
  53. 53.
    V. Bukelskienė, D. Baltriukienė, D. Bironaitė, A. Imbrasaitė, R. Širmenis, M. Balčiunas, E. Žurauskas, A. Kalvelytė, Muscle-derived primary stem cell lines for heart repair. Semin. Cardiol. 11, 99–105 (2005) Google Scholar
  54. 54.
    R. Širmenis, V. Bukelskienė, V. Domkus, V. Sirvydis, Cellular cardiomyoplasty: isolation and cultivation of skeletal muscle satellite cells. Acta Med. Litu. 6, 178–181 (1999) Google Scholar
  55. 55.
    S. Mercille, B. Massie, Induction of apoptosis in nutrient-deprived cultures of hybridoma and myelonoma cells. Biotechnol. Bioeng. 44, 1140–1154 (1999) CrossRefGoogle Scholar
  56. 56.
    S. Akiyama, Integrins in cell adhesion and signaling, Hum. Cell 9(3), 181–186 (1996) MathSciNetGoogle Scholar
  57. 57.
    B. Gumbiner, Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84(3), 345–357 (1996) CrossRefGoogle Scholar
  58. 58.
    N. Hallab, K. Bundy, K. O’Connor, R. Moses, J. Jacobs, Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng. 7, 55–71 (2001) CrossRefGoogle Scholar
  59. 59.
    R. Lange, F. Luthen, U. Beck, J. Rychly, A. Baumann, B. Nebe, Cell-extracellular matrix interaction and physico-chemical characteristics of titanium surfaces depend on the roughness of the material. Biomol. Eng. 19, 255–261 (2002) CrossRefGoogle Scholar
  60. 60.
    A. Khandwekar, D. Patil, A. Hardikar, Y. Shouche, M. Doble, In vivo modulation of foreign body response on polyurethane by surface entrapment technique. J. Biomed. Mater. Res., Part A 95(2), 413–423 (2010) CrossRefGoogle Scholar
  61. 61.
    P. Lips, M. van Luyn, F. Chiellini, L. Brouwer, I. Velthoen, P. Dijkstra, J. Feijen, Biocompatibility and degradation of aliphatic segmented poly(ester amide)s: in vitro and in vivo evaluation. J. Biomed. Mater. Res., Part A 76(4), 699–710 (2006) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Mangirdas Malinauskas
    • 1
  • Daiva Baltriukiene
    • 2
  • Antanas Kraniauskas
    • 3
  • Paulius Danilevicius
    • 1
  • Rasa Jarasiene
    • 2
  • Raimondas Sirmenis
    • 3
  • Albertas Zukauskas
    • 1
  • Evaldas Balciunas
    • 1
  • Vytautas Purlys
    • 1
  • Roaldas Gadonas
    • 1
  • Virginija Bukelskiene
    • 2
  • Vytautas Sirvydis
    • 3
  • Algis Piskarskas
    • 1
  1. 1.Laser Research Center, Department of Quantum Electronics, Physics FacultyVilnius UniversityVilniusLithuania
  2. 2.Vivarium, Institute of BiochemistryVilnius UniversityVilniusLithuania
  3. 3.Centre of Heart SurgeryVilnius University Hospital Santariskiu KlinikosVilniusLithuania

Personalised recommendations