Applied Physics A

, Volume 108, Issue 1, pp 1–6 | Cite as

A dual-curable transfer layer for adhesion enhancement of a multilayer UV-curable nanoimprint resist system

  • Dingfu Xia
  • Liang Ye
  • Xu Guo
  • Yushuang Cui
  • Jizong Zhang
  • Changsheng Yuan
  • Haixiong Ge
  • Wei Wu
  • Yanfeng Chen
Invited paper
  • 290 Downloads

Abstract

We invented a dual-curable transfer layer to enhance adhesion of the UV-curable nanoimprint resist to the substrate. Based on this transfer layer, we developed bilayer resist and trilayer resist UV-curable nanoimprint lithography processes, which were used for etching and lift-off processes, respectively. The dual-curable transfer layer combined at least two different types of reactive functions based on different polymerization mechanisms. It formed strong chemical bonds with both the underneath material and the nanoimprint resist layer in two curing steps. It helped improve the adhesion of the low surface energy resist film to the substrate substantially, and, more importantly, made high-resolution patterning much more reliable. Moreover, low aspect ratio imprinted patterns were amplified into high aspect ratio patterns through the transfer layer via a selective etching process.

References

  1. 1.
    M.D. Austin, H.X. Ge, W. Wu, M.T. Li, Z.N. Yu, D. Wasserman, S.A. Lyon, S.Y. Chou, Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography. Appl. Phys. Lett. 84, 5299–5301 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S.V. Screenivasan, J. Ekerdt, C.G. Willson, Step and flash imprint lithography: a new approach to high-resolution patterning. Proc. SPIE 3676, 379–389 (1999) ADSCrossRefGoogle Scholar
  3. 3.
    J. Haisma, M. Verheijen, K. van den Heuvel, J. van den Berg, Mold-assisted nanolithography: a process for reliable pattern replication. J. Vac. Sci. Technol. B 14, 4124–4128 (1996) CrossRefGoogle Scholar
  4. 4.
    J. Shaw, E. Babich, M. Hatzakis, J. Paraszczak, Polysiloxanes for optical lithography. Solid State Technol. 30, 83–89 (1987) Google Scholar
  5. 5.
    S.C. Johnson, T.C. Bailey, M.D. Dickey, B.J. Smith, E.K. Kim, A.T. Jamieson, N.A. Stacey, J.G. Ekerdt, C.G. Willson, D.P. Mancini, W.J. Dauksher, K.J. Nordquist, D.J. Resnick, Advances in step and flash imprint lithography. Proc. SPIE 5037, 197–202 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    H.X. Ge, W. Wu, Z.Y. Li, G.Y. Jung, D.L. Olynick, Y.F. Chen, J.A. Liddle, S.Y. Wang, R.S. Williams, Cross-linked polymer replica of a nanoimprint mold at 30 nm half-pitch. Nano Lett. 5, 179–182 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    C. Decker, K. Zahouily, A. Valet, Curing and photostabilization of thermoset and photoset acrylate polymers. Macromol. Mater. Eng. 286, 5–16 (2001) CrossRefGoogle Scholar
  8. 8.
    K. Doren, W. Freitag, D. Stoye, Water-Borne Coatings: The Environmentally-Friendly Alternative (Hanser, New York, 1994) Google Scholar
  9. 9.
    A. El-ghayoury, C. Boukaftane, B. de Ruiter, R. van der Linde, Dual-cure processes: towards deformable crosslinked coatings. Macromol. Symp. 187, 553–561 (2002) CrossRefGoogle Scholar
  10. 10.
    S. Peeters, In Overview of Dual-Cure and Hybrid-Cure Systems in Radiation Curing in Radiation Curing in Polymer Science and Technology, vol. III, ed. by J.P. Fouassier, J.F. Rabek (Elsevier Science, New York, 1993), pp. 177–218 Google Scholar
  11. 11.
    K. Rainer, E. Beck, K. Menzel, Radiation-curable coating resins for outdoor use. Farbe Lack 105, 233–240 (1999) Google Scholar
  12. 12.
    W. Fischer, J. Weikard, Dual cure: new possibilities with radiation-curable coatings. Farbe Lack 107, 120–126 (2001) Google Scholar
  13. 13.
    J.F. Bohland, G.S. Calabrese, M.F. Cronin, D. Canistro, T.H. Fedynyshyn, J. Ferrari, A.A. Lamola, G.W. Orsula, E.K. Pavelchek, R. Sinta, J.W. Thackeray, A.K. Berry, L.E. Pogan Jr., M.P. de Grandpre, W.E. Feely, K.A. Graziano, R. Olsen, S. Thompson, M.R. Winkle, Some resists based on chemically-amplified crosslinking of phenolic polymers. J. Photopolym. Sci. Technol. 3, 355–373 (1990) CrossRefGoogle Scholar
  14. 14.
    D.R. Bauer, G.F. Budde, Crosslinking kinetics and network formation in organic coatings containing hexamethoxymethylmelamine. J. Appl. Polym. Sci. 28, 253–266 (1983) CrossRefGoogle Scholar
  15. 15.
    F.W. Billmeyer Jr., Textbook of Polymer Science, 3rd edn. (Wiley Interscience, New York, 1984) Google Scholar
  16. 16.
    E.W. Meijer, A model study for coatings containing hexamethoxymethylmelamine. J. Polym. Sci., A, Polym. Chem. 24, 2199–2208 (1986) ADSCrossRefGoogle Scholar
  17. 17.
    Y.J. Park, D.H. Lim, H.J. Kim, D.S. Park, I.K. Sung, UV- and thermal-curing behaviors of dual-curable adhesives based on epoxy acrylate oligomers. Int. J. Adhes. Adhes. 29, 710–717 (2009) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Dingfu Xia
    • 1
  • Liang Ye
    • 1
  • Xu Guo
    • 1
  • Yushuang Cui
    • 1
  • Jizong Zhang
    • 1
  • Changsheng Yuan
    • 1
  • Haixiong Ge
    • 1
  • Wei Wu
    • 2
  • Yanfeng Chen
    • 1
  1. 1.Department of Materials Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid State MicrostructuresNanjing UniversityNanjingP.R. China
  2. 2.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations