Applied Physics A

, Volume 107, Issue 4, pp 801–808 | Cite as

Drilling rate of five metals with picosecond laser pulses at 355, 532, and 1064 nm

  • Alex Spiro
  • Mary Lowe
  • Guerman Pasmanik


Experimental results on picosecond laser processing of aluminum, nickel, stainless steel, molybdenum, and tungsten are described. Hole drilling is employed for comparative analysis of processing rates in an air environment. Drilling rates are measured over a wide range of laser fluences (0.05–20 J/cm2). Experiments with picosecond pulses at 355 nm are carried out for all five metals and in addition at 532 nm, and 1064 nm for nickel. A comparison of drilling rate with 6-ps and 6-ns pulses at 355 nm is performed. The dependence of drilling rate on laser fluence measured with picosecond pulses demonstrates two logarithmic regimes for all five metals. To determine the transition from one regime to another, a critical fluence is measured and correlated with the thermal properties of the metals. The logarithmic regime at high-fluence range with UV picosecond pulses is reported for the first time. The energy efficiency of material removal for the different regimes is evaluated. The results demonstrate that UV picosecond pulses can provide comparable quality and higher processing rate compared with literature data on ablation with near-IR femtosecond lasers. A significant contribution of two-photon absorption to the ablation process is suggested to explain high processing rate with powerful UV picosecond pulses.


Drilling Rate Ablation Threshold High Fluences Nanosecond Pulse Picosecond Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We wish to thank Joseph d’Entremont and Greg Solyar at Lenox Laser for hosting A.S. and use of the equipment.


  1. 1.
    J. Bekesi, J.-H. Klein-Wiele, P. Simon, Appl. Phys. A 76, 355 (2003) ADSCrossRefGoogle Scholar
  2. 2.
    S. Preuss, E. Matthias, M. Stuke, Appl. Phys. A 59, 79 (1994) ADSCrossRefGoogle Scholar
  3. 3.
    S. Preuss, A. Demchuk, M. Stuke, Appl. Phys. A 61, 33 (1995) ADSCrossRefGoogle Scholar
  4. 4.
    J. Byskov-Nielsen, J.-M. Savolainen, M.S. Christensen, P. Balling, Appl. Phys. A 103, 447 (2011) ADSCrossRefGoogle Scholar
  5. 5.
    Tunnermann, S. Nolte, J. Limpert, Laser Tech. J. 7, 34 (2010) CrossRefGoogle Scholar
  6. 6.
    J. Yang, Y. Zhao, N. Zhang, Y. Liang, M. Wang, Phys. Rev. B 76, 165430-1 (2007) ADSGoogle Scholar
  7. 7.
    R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, F. Dausinger, Appl. Surf. Sci. 249, 322 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    C.Y. Chien, M.C. Gupta, Appl. Phys. A 81, 1257 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tunnermann, Appl. Phys. A 63, 109 (1996) ADSCrossRefGoogle Scholar
  10. 10.
    Semerok, B. Sallé, J.-F. Wagner, G. Petite, Laser Part. Beams 20, 67 (2002) ADSCrossRefGoogle Scholar
  11. 11.
    M.R.H. Knowles, G. Rutterford, D. Karnakis, A. Ferguson, Int. J. Adv. Manuf. Technol. 33, 95 (2007) CrossRefGoogle Scholar
  12. 12.
    S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, J. Opt. Soc. Am. B 14, 2716 (1997) ADSCrossRefGoogle Scholar
  13. 13.
    P.T. Mannion, J. Magee, E. Coyne, G.M. O’Connor, T.J. Glynn, Appl. Surf. Sci. 233, 275 (2004) ADSCrossRefGoogle Scholar
  14. 14.
    T. Zhang, Y. Kato, H. Daido, IEEE J. Quantum Electron. 32, 127 (1996) ADSCrossRefGoogle Scholar
  15. 15.
    R. Penttilä, H. Pantsar, P. Laakso, in Proc. of the 11th NOLAMP Conf. in Laser Process. of Mater. (Lappeenranta University of Technology, Lappeenranta, 2007), p. 502 Google Scholar
  16. 16.
    A.E. Wynne, B.S. Stuart, Appl. Phys. A 76, 373 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    C. Körner, R. Mayerhofer, M. Hartmenn, H.W. Bergman, Appl. Phys. A 63, 123 (1996) ADSCrossRefGoogle Scholar
  18. 18.
    N.M. Bulgakova, A.V. Bulgakov, Appl. Phys. A 73, 199 (2001) ADSCrossRefGoogle Scholar
  19. 19.
    J. Byskov-Nielsen, J.-M. Savolainen, M.S. Christensen, P. Balling, Appl. Phys. A 101, 97 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    S. Amoruso, Appl. Phys. A 69, 323 (1999) ADSCrossRefGoogle Scholar
  21. 21.
    Vladoiu, M. Stafe, C. Negutu, I.M. Popescu, J. Optoelectron. Adv. Mater. 10, 3177 (2008) Google Scholar
  22. 22.
    S. Küper, M. Stuke, Appl. Phys. Lett. 54, 4 (1989) ADSCrossRefGoogle Scholar
  23. 23.
    S. Preuss, M. Späth, Y. Zhang, M. Stuke, Appl. Phys. Lett. 62, 3049 (1993) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Loyola University MarylandBaltimoreUSA
  2. 2.Passat, Inc.Owings MillsUSA

Personalised recommendations