Advertisement

Applied Physics A

, Volume 108, Issue 2, pp 431–437 | Cite as

Thermally activated crystallization of Nb2O5 grown on Pt electrode

  • L. Berger
  • H. Mähne
  • V. Klemm
  • A. Leuteritz
  • T. Mikolajick
  • D. Rafaja
Article

Abstract

The influence of the local crystallographic orientation of the polycrystalline bottom platinum electrode on the crystallization of niobium pentoxide thin films during their rapid thermal annealing was investigated by X-ray diffraction, X-ray reflectivity and transmission electron microscopy. The Nb2O5 thin films under study were reactively sputtered in a mixed O2/Ar atmosphere and subsequently subjected to the annealing in argon atmosphere at temperatures ranging from 500 C to 700 C. The X-ray diffraction confirmed a transition from the amorphous niobium oxide to the crystalline orthorhombic Nb2O5 for temperatures between 500 C and 600 C. The X-ray reflectivity measurements showed that the crystallization process was accompanied by a continuous increase of the electron density in Nb2O5 and by a rapid increase of the surface roughness at 700 C. It was further observed by transmission electron microscopy that Nb2O5 crystallizes selectively and that the crystalline domains of Nb2O5 possess a strong orientation relationship to the platinum from the bottom electrode. The orientation relationship \((\bar{1} 1 1)_{\mathrm{Pt}}\,{\parallel}\, (\bar{1} \bar{6}0)_{\mathrm{Nb}_{2}\mathrm{O}_{5}}\) was identified as the most beneficial one for crystallization of Nb2O5.

Keywords

Nb2O5 Orientation Relationship Rapid Thermal Annealing Rapid Thermal Process Niobium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Richter, H. Kupfer, P. Schlott, T. Gessner, C. Kaufmann, Thin Solid Films 389, 278 (2001) ADSCrossRefGoogle Scholar
  2. 2.
    M. Lira-Cantu, F.C. Krebs, Sol. Energy Mater. Sol. Cells 90, 2076 (2006) CrossRefGoogle Scholar
  3. 3.
    H. Szymanowski, O. Zabeida, J.E. Klemberg–Sapieha, L. Martinu, J. Vac. Sci. Technol., A, Vac. Surf. Films 23, 241 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    F. Lai, L. Lin, Z. Huang, R. Yan Qu, Appl. Surf. Sci. 253, 1801 (2006) ADSCrossRefGoogle Scholar
  5. 5.
    K. Kukli, M. Ritala, M. Leskelä, J. Electrochem. Soc. 148, F35 (2001) CrossRefGoogle Scholar
  6. 6.
    P. Periasamy, J.J. Berry, A.A. Dameron, J.D. Bergeson, D.S. Ginley, R.P. O’Hayre, P.A. Parilla, Adv. Mater. 23, 3080 (2011) CrossRefGoogle Scholar
  7. 7.
    T. Mikolajick, M. Salinga, M. Kund, T. Kever, Adv. Eng. Mater. 11, 235 (2009) CrossRefGoogle Scholar
  8. 8.
    W.R. Hiatt, T.W. Hickmott, Appl. Phys. Lett. 6, 106 (1965) ADSCrossRefGoogle Scholar
  9. 9.
    S. Venkataraj, R. Drese, O. Kappertz, R. Jayavel, M. Wuttig, Phys. Status Solidi A 188, 1047 (2001) ADSCrossRefGoogle Scholar
  10. 10.
    K. Yoshimura, T. Miki, S. Iwama, S. Tanemura, Thin Solid Films 281–282, 235 (1996) CrossRefGoogle Scholar
  11. 11.
    M.G. Krishna, A.K. Bhattacharya, Mater. Sci. Eng. B 86, 41 (2001) CrossRefGoogle Scholar
  12. 12.
    K.T. Jacob, C. Shekhar, M. Vinay, J. Chem. Eng. Data 55, 4854 (2010) CrossRefGoogle Scholar
  13. 13.
    S. Venkataraj, R. Drese, Ch. Liesch, O. Kappertz, R. Jayavel, M. Wuttig, J. Appl. Phys. 91, 4863 (2002) ADSCrossRefGoogle Scholar
  14. 14.
    H. Schäffer, R. Gruehn, F. Schulte, Angew. Chem. 78, 28 (1966) CrossRefGoogle Scholar
  15. 15.
    Powder Diffraction File on CD-ROM, The International Centre for Diffraction Data, New Town Square, Philadelphia, PA (2003), records # 071-0336 and 028-0317 Google Scholar
  16. 16.
    J.G. Weismann, E.I. Ko, P. Wynblatt, J.M. Howe, Chem. Mater. 1, 187 (1989) CrossRefGoogle Scholar
  17. 17.
    A. Pignolet, G.M. Roa, S.B. Krupanidhi, Thin Solid Films 261, 18 (1995) ADSGoogle Scholar
  18. 18.
    M. Serényi, T. Lohner, P. Petrik, Z. Zolnai, Z.E. Horváth, N.Q. Khánh, Thin Solid Films 516, 8096 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    Inorganic Crystal Structure Database on CD-ROM, FIZ Karlsruhe and NIST Gaithersburg (2011) Google Scholar
  20. 20.
    G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953) CrossRefGoogle Scholar
  21. 21.
    T. Hahn (ed.), International Tables for Crystallography, vol. A, 5th edn. The International Union of Crystallography (Springer, Berlin, 2005) Google Scholar
  22. 22.
    J.H. Underwood, T.W. Barbee, Appl. Opt. 20, 3027 (1981) ADSCrossRefGoogle Scholar
  23. 23.
    P. Lee, Appl. Opt. 22, 1241 (1983) ADSCrossRefGoogle Scholar
  24. 24.
    B. Vidal, P. Vincent, Appl. Opt. 23, 1794 (1984) ADSCrossRefGoogle Scholar
  25. 25.
    D. Rafaja, H. Fuess, D. Šimek, J. Kub, J. Zweck, J. Vacínová, V. Valvoda, J. Phys., Condens. Matter 14, 5303 (2002) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • L. Berger
    • 1
  • H. Mähne
    • 2
  • V. Klemm
    • 1
  • A. Leuteritz
    • 1
  • T. Mikolajick
    • 2
    • 3
  • D. Rafaja
    • 1
  1. 1.Institute of Materials ScienceTU Bergakademie FreibergFreibergGermany
  2. 2.NaMLab gGmbHDresdenGermany
  3. 3.Institute for Semiconductor and MicrosystemsTU DresdenDresdenGermany

Personalised recommendations