Applied Physics A

, Volume 107, Issue 3, pp 525–529 | Cite as

Fabrication of three-focal diffractive lenses by two-photon polymerization technique

  • Vladimir Osipov
  • Leonid L. Doskolovich
  • Evgeni A. Bezus
  • Wei Cheng
  • Arune Gaidukeviciute
  • Boris Chichkov
Rapid communication

Abstract

Fabrication of submicron-height relief of three-focal diffractive lenses using two-photon polymerization is studied. Optical properties of the designed lenses are investigated theoretically and experimentally. The proposed design of the combined diffractive–refractive lenses is promising for the realization of three-focal optical ophthalmological implants with predetermined light intensity distribution between the foci. The realized three-focal optical element has a diameter size of 2.7 mm with the focal distances in the range of 27–34 mm.

Notes

Acknowledgements

We would like to gratefully acknowledge the EC FP7-Marie Curie-IIF Program (Proposal No. 235969), the Russian Federation state contract no. 07.514.11.4060, and the German project REMEDIS for support of this work.

References

  1. 1.
    B.C. Kress, P. Meyrueis, Applied Digital Optics: From Micro-optics to Nanophotonics (Wiley, New York, 2009) Google Scholar
  2. 2.
    D.C. O’Shea, T.J. Suleski, A.D. Kathman, D.W. Pratner, Diffractive Optics: Design, Fabrication, and Test (SPIE, Bellingham, 2004) Google Scholar
  3. 3.
    L.L. Doskolovich, D.L. Golovashkin, N.L. Kazanskiy, S.N. Khonina, V.V. Kotlyar, V.S. Pavelyev, R.V. Skidanov, V.A. Soifer, V.S. Solovyev, G.V. Uspleniev, A.V. Volkov, in Methods for Computer Design of Diffractive Optical Elements, ed. by V.A. Soifer (Wiley, New York, 2002) Google Scholar
  4. 4.
    A.L. Cohen, Appl. Opt. 31(19), 3750 (1992) ADSCrossRefGoogle Scholar
  5. 5.
    M.J. Simpson, Appl. Opt. 31(19), 3621 (1992) ADSCrossRefGoogle Scholar
  6. 6.
    S. Kawata, H.B. Sun, T. Tanaka, K. Takada, Nature 412(6848), 4675 (1997) Google Scholar
  7. 7.
    B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.-Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röskel, M. Rumi, X.-L. Wu, S.R. Marder, J.W. Perry, Nature 398, 51 (1999) ADSCrossRefGoogle Scholar
  8. 8.
    J. Serbin, A. Egbert, A. Ostendorf, B.N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, M. Popall, Opt. Lett. 28(5), 301 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    J. Serbin, A. Ovsianikov, B. Chichkov, Opt. Express 12(21), 5221 (2004) ADSCrossRefGoogle Scholar
  10. 10.
    J. Fischer, G. von Freymann, M. Wegener, Adv. Mater. 22, 3578 (2010) CrossRefGoogle Scholar
  11. 11.
    B. Jia, J. Serbin, H. Kim, B. Lee, J. Li, M. Gu, Appl. Phys. Lett. 90, 073503 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    V. Osipov, V. Pavelyev, D. Kachalov, A. Žukauskas, B. Chichkov, Opt. Express 18(25), 25808 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    M.A. Golub, L.L. Doskolovich, N.L. Kazanskiy, S.I. Kharitonov, V.A. Soifer, J. Mod. Opt. 39(6), 1245 (1992) ADSCrossRefGoogle Scholar
  14. 14.
    V. Soifer, V. Kotlyar, L. Doskolovich, Iterative Methods for Diffractive Optical Elements Computation (Taylor & Francis, London, 1997) Google Scholar
  15. 15.
    F.W.J. Olver, Bessel functions of integer order, in Handbook of Mathematical Functions, with Formulas, Graphs and Tables, ed. by M. Abramowitz, I. Stegun (National Bureau of Standards, Washington, D.C., 1964), pp. 355–434 Google Scholar
  16. 16.
    K. Obata, J. Koch, U. Hinze, B.N. Chichkov, Opt. Express 18(16), 17193 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Vladimir Osipov
    • 1
  • Leonid L. Doskolovich
    • 2
    • 3
  • Evgeni A. Bezus
    • 2
    • 3
  • Wei Cheng
    • 1
  • Arune Gaidukeviciute
    • 1
  • Boris Chichkov
    • 1
  1. 1.Laser Zentrum Hannover e.V.HannoverGermany
  2. 2.Image Processing Systems Institute of RASSamaraRussia
  3. 3.Technical Cybernetics DepartmentSamara State Aerospace UniversitySamaraRussia

Personalised recommendations