Applied Physics A

, Volume 107, Issue 3, pp 509–518

Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal–oxide–metal memristors

  • Dmitri B. Strukov
  • Fabien Alibart
  • R. Stanley Williams
Invited paper

Abstract

We show that the SET operation of a unipolar memristor could be explained by thermophoresis, or the Soret effect, which is the diffusion of atoms, ions or vacancies in a steep temperature gradient. This mechanism explains the observed resistance switching via conducting channel formation and dissolution reported for TiO2 and other metal-oxide-based unipolar resistance switches. Depending on the temperature profile in a device, dilute vacancies can preferentially diffuse radially inward toward higher temperatures caused by the Joule heating of an electronic current to essentially condense and form a conducting channel. The RESET operation occurs via radial diffusion of vacancies away from the channel when the temperature is elevated but the gradient is small.

References

  1. 1.
    G. Dearnaley, A.M. Stoneham, D.V. Morgan, Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 33, 1129–1192 (1970) ADSCrossRefGoogle Scholar
  2. 2.
    H. Pagnia, N. Sotnik, Bistable switching in electroformed metal–insulator–metal devices. Phys. Status Solidi A 108(11), 11–65 (1988) ADSCrossRefGoogle Scholar
  3. 3.
    A. Sawa, Resistive switching in transition metal oxides. Mater. Today 11, 28–36 (2008) CrossRefGoogle Scholar
  4. 4.
    K.K. Likharev, CMOL technology: devices, circuits, and architectures. J. Nanoelectron. Optoelectron. 3, 203–230 (2008) CrossRefGoogle Scholar
  5. 5.
    R. Waser, R. Dittman, G. Staikov, K. Szot, Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009) CrossRefGoogle Scholar
  6. 6.
    M.T. Hickmott, Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33, 2669–2682 (1962) ADSCrossRefGoogle Scholar
  7. 7.
    D.S. Jeong, H. Schroeder, R. Waser, Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/Pt stack. Electrochem. Solid-State Lett. 10, G51–G53 (2007) CrossRefGoogle Scholar
  8. 8.
    L. Goux, J.G. Lisoni, M. Jurczak, D.J. Wouters, L. Courtade, Ch. Muller, Coexistence of the bipolar and unipolar resistive-switching modes in NiO cells made by thermal oxidation of Ni layers. J. Appl. Phys. 107, 024512 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    L.O. Chua, Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971) CrossRefGoogle Scholar
  11. 11.
    D.B. Strukov, J.L. Borghetti, R.S. Williams, Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small 5(9), 1058–1063 (2009) CrossRefGoogle Scholar
  12. 12.
    D.B. Strukov, R.S. Williams, Exponential ionic drift: Fast switching and low volatility of thin film memristors. Appl. Phys. A 94(3), 515–519 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    Y.-Y. Lin, F.-M. Lee, W.-C. Chien, Y.-C. Chen, K.-Y. Hsieh, C.-Y. Lu, A model for the RESET operation of electrochemical conducting bridge resistive memory (CB-ReRAM), in Proc. Int. Electron Device Meet., San Francisco, CA, January 2010, pp. 22.2.1–22.2.4 CrossRefGoogle Scholar
  14. 14.
    F. Nardi, D. Ielmini, C. Cagli, S. Spiga, M. Fanciulli, L. Goux, D.J. Wouters, Control of filament size and reduction of reset current below 10 mA in NiO resistance switching memories. Solid-State Electron. 58, 42–47 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    D. Ielmini, F. Nardi, C. Cagli, Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories. Nanotechnology 22, 254022 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    S.F. Karg, G.I. Meijer, J.G. Bednorz, C.T. Rettner, A.G. Schrott, E.A. Joseph, C.H. Lam, M. Janousch, U. Staub, F. La Mattina, S.F. Alvarado, D. Widmer, R. Stutz, U. Drechsler, D. Caimi, Transition-metal oxide-based resistance change memories. IBM J. Res. Dev. 52(4–5), 481–492 (2008) CrossRefGoogle Scholar
  17. 17.
    U. Russo, D. Ielmini, C. Cagli, A.L. Lacaita, S. Spigat, C. Wiemert, M. Peregot, M. Fanciulli, Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM, in Proc. Int. Electron Devices Meet., Baltimore, MD, December 2007, pp. 775–778, art. 4419062 Google Scholar
  18. 18.
    J.L. Borghetti, D.M. Strukov, M.D. Pickett, J.J. Yang, R.S. Williams, Electrical transport and thermometry of electroformed titanium dioxide memristive switches. J. Appl. Phys. 106, 124504 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    S.H. Chang, S.C. Chae, S.B. Lee, C. Liu, T.W. Noh, J.S. Lee, B. Kahng, J.H. Jang, M.Y. Kim, D.-W. Kim, C.U. Jung, Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors. Appl. Phys. Lett. 92, 183507 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    A. Shkabko, M.H. Aguirre, I. Marozau, T. Lippert, A. Weidenkaff, Measurements of current-voltage-induced heating in the Al/SrTiO3− xNy/Al memristor during electroformation and resistance switching. Appl. Phys. Lett. 95, 152109 (2009) ADSCrossRefGoogle Scholar
  21. 21.
    J.P. Strachan, D.B. Strukov, J. Borghetti, J.J. Yang, G. Medeiros-Ribeiro, R.S. Williams, The switching location of a bipolar memristor: Chemical, thermal, and structural mapping. Nanotechnology 22, 254015 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    N.A. Tulina, V.V. Sirotkin, Electron instability in doped-manganites-based heterojunctions. Physica C, Supercond. 400(3–4), 105–110 (2004) ADSCrossRefGoogle Scholar
  23. 23.
    D.B. Strukov, R.S. Williams, Intrinsic constrains on thermally-assisted memristive switching. Appl. Phys. A 102, 851–855 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    H. Schroeder, V. Zhirnov, R.K. Cavin, R. Waser, Voltage-time dilemma of pure electronic mechanisms in resistive switching memory cells. J. Appl. Phys. 107(5), 054517 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    V.V. Zhirnov, R.K. Cavin, S. Menzel, E. Linn, S. Schmelzer, D. Brauhaus, C. Schindler, R. Waser, Memory devices: energy-space-time tradeoffs. Proc. IEEE 98(12), 2185–2200 (2010) CrossRefGoogle Scholar
  26. 26.
    M. Noman, W. Jiang, P.A. Salvador, M. Skowronski, J.A. Bain, Computational investigations into the operating window for memristive devices based on homogeneous ionic motion. Appl. Phys. A 102(4), 877–883 (2011) ADSCrossRefGoogle Scholar
  27. 27.
    S.C. Chae, J.S. Lee, S. Kim, S.B. Lee, S.H. Chang, C. Liu, B. Kahng, H. Shin, D.-W. Kim, C.U. Jung, S. Seo, M.-J. Lee, T.W. Noh, Random circuit breaker network model for unipolar switching. Adv. Mater. 20, 1154–1159 (2008) CrossRefGoogle Scholar
  28. 28.
    G. Bersuker, D.C. Gilmer, D. Veksler, J. Yum, H. Park, S. Lian, L. Vandelli, A. Padovanu, L. Larcher, K. McKenna, A. Shluger, V. Iglesias, M. Porti, W. Taylor, P.D. Kirsch, R. Jammy, Metal oxide RRAM switching mechanism based on conductive filament microscopic properties, in Proc. Int. Electron Device Meet., San Francisco, CA, January 2010, pp. 19.6.1–19.6.4 CrossRefGoogle Scholar
  29. 29.
    S. Larentis, C. Cagli, F. Nardi, D. Ielmini, Filament diffusion model for simulating reset and retention processes in RRAM. Microelectron. Eng. 88(7), 1119–1123 (2011) CrossRefGoogle Scholar
  30. 30.
    S.B. Lee, J.S. Lee, S.H. Chang, H.K. Yoo, B.S. Kang, B. Kahng, M.-J. Lee, C.J. Kim, T.W. Noh, Interface-modified random circuit breaker network model applicable to both bipolar and unipolar resistance switching. Appl. Phys. Lett. 98, 033502 (2011) ADSCrossRefGoogle Scholar
  31. 31.
    K.M. Kim, D.S. Jeong, C.S. Hwang, Nanofilamentary resistive switching in binary oxide systems; a review on the present status and outlook. Nanotechnology 22, 254002 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    R. Münstermann, J.J. Yang, J.P. Strachan, G. Medeiros-Reibeiro, R. Dittman, R. Waser, Morphological and electrical changes in TiO2 memristive devices induced by electroforming and switching. Phys. Status Solidi, Rapid Res. Lett. 4, 16–18 (2010) ADSCrossRefGoogle Scholar
  33. 33.
    I. Goldhirsch, D. Ronis, Theory of thermophoresis. I. General considerations and mode-coupling analysis. Phys. Rev. A 27, 1616–1634 (1983) ADSCrossRefGoogle Scholar
  34. 34.
    F. Ewart, K. Lassmann, H. Matzke, L. Manes, A. Saunders, Oxygen potential measurements in irradiated mixed oxide fuel. J. Nucl. Mater. 124, 44–55 (1984) ADSCrossRefGoogle Scholar
  35. 35.
    J. Janek, H. Timm, Thermal diffusion and Soret effect in (U, Me) O2+δ: the heat of transport of oxygen. J. Nucl. Mater. 255, 116–127 (1998) ADSCrossRefGoogle Scholar
  36. 36.
    L.J.T.M. Kempers, A comprehensive thermodynamic theory of the Soret effect in a multicomponent gas, liquid, or solid. J. Chem. Phys. 115, 6330–6341 (2001) ADSCrossRefGoogle Scholar
  37. 37.
    L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64, 209–223 (1976) MathSciNetCrossRefGoogle Scholar
  38. 38.
    L.O. Chua, Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011) ADSCrossRefGoogle Scholar
  39. 39.
    R.D. Astumian, Coupled transport at the nanoscale: the unreasonable effectiveness of equilibrium theory. Proc. Natl. Acad. Sci. USA 104, 3–4 (2007) ADSCrossRefGoogle Scholar
  40. 40.
    H. Timm, J. Janek, On the Soret effect in binary nonstochiometric oxides—kinetic demixing of cuprite in a temperature gradient. Solid State Ion. 176, 1131–1143 (2005) CrossRefGoogle Scholar
  41. 41.
    A.S. Alexandrov, A.M. Bratkovsky, B. Bridle, S.E. Savel’ev, D.B. Strukov, R.S. Williams, Current-controlled negative differential resistance due to Joule heating in TiO2. Appl. Phys. Lett. 99, 202104 (2011) ADSCrossRefGoogle Scholar
  42. 42.
    T. Kaplan, D. Adler, Electrothermal switching in amorphous semiconductors. J. Non-Cryst. Solids 8–10, 538–543 (1972) CrossRefGoogle Scholar
  43. 43.
    S. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley-Interscience, New York, 1981) Google Scholar
  44. 44.
    D. Ielmini, Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses. Phys. Rev. B 78, 035308 (2008) ADSCrossRefGoogle Scholar
  45. 45.
    D.-H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010) ADSCrossRefGoogle Scholar
  46. 46.
    H. Iddir, S. Ogut, P. Zapol, N.D. Browning, Energetics and diffusion of intrinsic surface and subsurface defects on anatase TiO2 (101). Phys. Rev. B 75, 073203 (2007) ADSCrossRefGoogle Scholar
  47. 47.
    M.D. Pickett, D.B. Strukov, J. Borghetti, J.J. Yang, G.S. Snider, D.R. Stewart, R.S. Williams, Switching dynamics in a titanium dioxide memristive device. J. Appl. Phys. 106, 074508 (2009) ADSCrossRefGoogle Scholar
  48. 48.
    J.J. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, R.S. Williams, The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20, 215201 (2009) ADSCrossRefGoogle Scholar
  49. 49.
    N.F. Mott, R.W. Gurney, Electronic Processes in Ionic Crystals (Oxford University Press, New York, 1940) MATHGoogle Scholar
  50. 50.
    E. Cho, S. Han, H.-S. Ahn, K.-R. Lee, S.K. Kim, C.S. Hwang, First-principles study of point defects in rutile TiO2−x. Phys. Rev. B 73, 193202 (2006) ADSCrossRefGoogle Scholar
  51. 51.
    D.C. Cronemeyer, Infrared absorption of reduced rutile TiO2 single crystals. Phys. Rev. 113(5), 1123–1226 (1959) CrossRefGoogle Scholar
  52. 52.
    F.M. Hossain, G.E. Murch, L. Sheppard, J. Nowotny, Ab initio electronic structure calculation of oxygen vacancies in rutile titanium dioxide. Solid State Ion. 178, 319–325 (2007) CrossRefGoogle Scholar
  53. 53.
    M.M. Islam, T. Bredow, A. Gerson, Electronic properties of oxygen-deficient and aluminum-doped rutile TiO2 from first principles. Phys. Rev. B 76, 045217 (2007) ADSCrossRefGoogle Scholar
  54. 54.
    G. Mattioli, F. Filippone, P. Alippi, A.A. Bonapasta, Ab initio study of the electronic states induced by oxygen vacancies in rutil and anatase TiO2. Phys. Rev. B 78, 241201 (2008) ADSCrossRefGoogle Scholar
  55. 55.
    H. Kamisaka, T. Hitosugi, T. Suenaga, T. Hasegawa, K. Yamashita, Denisty functional theory based first-principle calculation of Nb-doped anatase TiO2 and its interactions with oxygen vacancies and interstital oxygen. J. Chem. Phys. 131, 034702 (2009) ADSCrossRefGoogle Scholar
  56. 56.
    S. Park, H.-S. Ahn, C.-K. Lee, H. Kim, H. Jin, H.-S. Lee, S. Seo, J. Yu, S. Han, Interaction and ordering of vacancy defects in NiO. Phys. Rev. B 77, 134103 (2008) ADSCrossRefGoogle Scholar
  57. 57.
    X. Guo, C. Schindler, S. Menzel, R. Waser, Understanding the switching-off mechanism in Ag+migration based resistively switching model systems. Appl. Phys. Lett. 91, 133513 (2007) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Dmitri B. Strukov
    • 1
  • Fabien Alibart
    • 1
  • R. Stanley Williams
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of California Santa BarbaraSanta BarbaraUSA
  2. 2.NanoElectronics Research GroupHewlett-Packard LaboratoriesPalo AltoUSA

Personalised recommendations