Applied Physics A

, Volume 107, Issue 3, pp 701–708 | Cite as

Gallium-based thermal interface material with high compliance and wettability

Article

Abstract

This study reports a gallium-based thermal interface material (GBTIM) consisting of gallium oxides dispersed uniformly into the 99 % gallium metal. The wettability of GBTIM with other materials is disclosed and compared. The thermal conductivity of GBTIM measured by a computer-controlled Mathis TCi thermal analyzer is ∼13.07 W m−1 K−1 at room temperature, which is significantly higher than that of conventional thermal greases. An experimental facility is described to measure the thermal resistance across the GBTIM under steady-state conditions and the thermal interface resistance is measured as low as 2.6 mm2 kW−1 with a pressure of 0.05 MPa, which is an order lower than that of the best commercialized thermal greases. Further, the GBTIM is formed into a desired shape to enhance thermal transfer, such as semi-liquid paste or thermal pad, which can be cut into a required shape.

References

  1. 1.
    J. Donald, M. Martonosi, in Proceedings of the 33rd International Symposium on Computer Architecture (ISCA), vol. 78 (2006) Google Scholar
  2. 2.
    T. Treurniet, V. Lammens, in 22nd IEEE SEMI-THERM Symposium, vol. 173 (2006) Google Scholar
  3. 3.
    I. Mudawar, IEEE Trans. Compon. Packag. Technol. 24, 122 (2001) CrossRefGoogle Scholar
  4. 4.
    S. Whalen, M. Thompson, D. Bahr, C. Richards, R. Richards, Sens. Actuators A 104, 290 (2003) CrossRefGoogle Scholar
  5. 5.
    U. Ghoshal, S. Ghoshal, C. McDowell, L. Shi, S. Cordes, M. Farinelli, Appl. Phys. Lett. 80, 3006 (2002) ADSCrossRefGoogle Scholar
  6. 6.
    G. Cha, Y. Sungtaek Ju, in ASME Int. Mech. Eng. Congress. Expos. Proc., vol. 12, p. 927 (2010) Google Scholar
  7. 7.
    J. Xu, T.S. Fisher, Int. J. Heat Mass Transf. 49, 1658 (2006) CrossRefGoogle Scholar
  8. 8.
    H.F. Chuang, S.M. Cooper, M. Meyyappan, B.A. Cruden, J. Nanosci. Nanotechnol. 4, 964 (2004) CrossRefGoogle Scholar
  9. 9.
    D. Chung, J. Mater. Eng. Perform. 10, 56 (2001) CrossRefGoogle Scholar
  10. 10.
    A. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, R.C. Haddon, J. Phys. Chem. C 111, 7565 (2007) CrossRefGoogle Scholar
  11. 11.
    Y. Wu, C.H. Liu, H. Huang, S.S. Fan, Appl. Phys. Lett. 87, 3108 (2005) ADSGoogle Scholar
  12. 12.
    B.A. Cola, X. Xu, T.S. Fisher, Appl. Phys. Lett. 90, 3513 (2007) CrossRefGoogle Scholar
  13. 13.
    B.A. Cola, J. Xu, C. Cheng, X. Xu, T.S. Fisher, H. Hu, J. Appl. Phys. 101, 4313 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    A. Hamdan, A. McLanahan, R. Richards, C. Richards, Exp. Therm. Fluid Sci. 35, 1250 (2011) CrossRefGoogle Scholar
  15. 15.
    J. Liu, Y.X. Zhou, China Patent No. 02131419.5 (2002) Google Scholar
  16. 16.
    K.Q. Ma, J. Liu, Phys. Lett. A 361, 252 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    Y.G. Deng, J. Liu, Heat Mass Transf. 46, 1327 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    P.P. Li, J. Liu, Appl. Phys. Lett. 99, 094106 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    P.P. Li, J. Liu, J. Electron. Packag. 133, 041009 (2011) CrossRefGoogle Scholar
  20. 20.
    R.B. Booth, G.W. Grube, P.A. Gruber, I.Y. Khandros, R. Zingher, US Patent, No 5.198.189 (1992) Google Scholar
  21. 21.
    L.T. Taylor, J. Rancourt, US Patent, NO 5.792.236 (1998) Google Scholar
  22. 22.
    S.C. Hardy, J. Cryst. Growth 7, 602 (1985) ADSCrossRefGoogle Scholar
  23. 23.
    T. Iida, R.I.L. Guthrie, The Physical Properties of Liquid Metals (Clarendon, Oxford, 1993) Google Scholar
  24. 24.
    J.P. Gwinn, R.L. Webb, Microelectron. J. 34, 215 (2003) CrossRefGoogle Scholar
  25. 25.
    M. Grujicic, C.L. Zhao, E.C. Dusel, Appl. Surf. Sci. 246, 290 (2005) ADSCrossRefGoogle Scholar
  26. 26.

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingP.R. China

Personalised recommendations