Applied Physics A

, Volume 108, Issue 2, pp 351–355 | Cite as

Efficient growth of millimeter-long few-walled carbon nanotube forests and their oil sorption

  • Bin Zhao
  • Lei Zhang
  • Youxuan Liang
  • Hanxun Qiu
  • Junhe Yang


Millimeter-long few-walled carbon nanotube (FWNT) forests were grown by a water-assisted chemical vapor deposition method. In only 10 min, the forests grew to over 1.2 mm in height, with a growth yield around 2.76±0.30 mg/cm2. Transmission electron microscopy observation and Raman analysis showed high crystallinity of the nanotubes. A carbon purity better than 98.8 wt% was further determined by thermogravimetric analysis measurement. The FWNT forests were evaluated as an adsorbent for oil sorption and exhibited reasonable oil sorption capacity of 35 g/g. It is inferred that the oil sorption for CNT forests does not depend on their surface area.


Chemical Vapor Deposition Transmission Electron Microscopy Examination Catalyst Lifetime Recycling Performance Intertube Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge support from NSFC (50973063, 50901086, and 51072118), the 973 Program (2010CB234609), the Shanghai Rising Star Program (10QA1405000), the Shanghai Shuguang Project (09SG46), the Science Foundation for the Excellent Youth Scholars of Shanghai Municipal Education Commission (slg10032), the Qianjiang Project of Zhejiang Province (2010R10047), the Shanghai Pujiang Program (11PJ1407200), and SRF for ROCS, SEM.


  1. 1.
    H. Qi, C. Qian, J. Liu, Chem. Mater. 18, 5691 (2006) CrossRefGoogle Scholar
  2. 2.
    N.A. Kumar, I. Jeon, G. Sohn, R. Jain, S. Kumar, J. Baek, ACS Nano 5, 2324 (2011) CrossRefGoogle Scholar
  3. 3.
    Y.Y. Feng, H.B. Zhang, Y. Hou, T.P. McNicholas, D.N. Yuan, S.W. Yang, L. Ding, W. Feng, J. Liu, ACS Nano 2, 1634 (2008) CrossRefGoogle Scholar
  4. 4.
    W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Science 274, 1701 (1996) ADSCrossRefGoogle Scholar
  5. 5.
    S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H.J. Dai, Science 283, 512 (1999) ADSCrossRefGoogle Scholar
  6. 6.
    B.Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, R.G. Ramanath, P.M. Ajayan, Nature 416, 495 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno, Chem. Phys. Lett. 360, 229 (2002) ADSCrossRefGoogle Scholar
  8. 8.
    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    B. Zhao, Z.L. Song, J.H. Yang, Mater. Lett. 63, 2556 (2009) CrossRefGoogle Scholar
  10. 10.
    H.Y. Jeong, D. Lee, H.K. Choi, D.H. Lee, J. Kim, J.Y. Lee, W.J. Lee, S.O. Kim, S. Choi, Appl. Phys. Lett. 96, 213105 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    K. Mukai, K. Asaka, T. Sugino, K. Kiyohara, I. Takeuchi, N. Terasawa, D.N. Futaba, K. Hata, T. Fukushima, T. Aida, Adv. Mater. 21, 1582 (2009) CrossRefGoogle Scholar
  12. 12.
    H. Huang, C.H. Liu, Y. Wu, S.S. Fan, Adv. Mater. 17, 1652 (2005) CrossRefGoogle Scholar
  13. 13.
    Z.J. Fan, J. Yan, G.Q. Ning, T. Wei, W.Z. Qian, S.J. Zhang, C. Zheng, Q. Zhang, F. Wei, Carbon 48, 4197 (2010) CrossRefGoogle Scholar
  14. 14.
    G. Zhang, D. Mann, L. Zhang, A. Javey, Y. Li, E. Yenilmez, Q. Wang, J.P. McVittie, Y. Nishi, J. Gibbons, H.J. Dai, Proc. Natl. Acad. Sci. USA 102, 16141 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    Y. Murakami, S. Chiashi, Y. Miyauchi, M. Hu, M. Ogura, T. Okubo, S. Maruyama, Chem. Phys. Lett. 385, 298 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    Z.F. Ren, Z.P. Huang, J.W. Wu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 282, 1105 (1998) ADSCrossRefGoogle Scholar
  17. 17.
    C. Qian, H. Qi, J. Liu, J. Phys. Chem. C 111, 131 (2007) CrossRefGoogle Scholar
  18. 18.
    K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 306, 1362 (2004) ADSCrossRefGoogle Scholar
  19. 19.
    L.B. Zhu, J.W. Xu, Y.H. Xiu, Y.Y. Sun, D.W. Hessa, C.P. Wong, Carbon 44, 253 (2006) CrossRefGoogle Scholar
  20. 20.
    D.N. Futaba, K. Hata, T. Yamada, K. Mizuno, M. Yumura, S. Iijima, Phys. Rev. Lett. 95, 056104-1 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    T. Yamada, A. Maigne, M. Yudasaka, K. Mizuno, D.N. Futaba, M. Yumura, S. Iijima, K. Hata, Nano Lett. 8, 4288 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    S. Yasuda, D.N. Futaba, M. Yumura, S. Iijima, K. Hata, Appl. Phys. Lett. 93, 143115 (2008) ADSCrossRefGoogle Scholar
  23. 23.
    S.P. Patole, J.H. Park, T.Y. Lee, J.H. Lee, A.S. Patole, J.B. Yoo, Appl. Phys. Lett. 93, 114101 (2008) ADSCrossRefGoogle Scholar
  24. 24.
    S. Yasuda, D.N. Futaba, T. Yamada, J. Satou, A. Shibuya, H. Takai, K. Arakawa, M. Yumura, K. Hata, ACS Nano 3, 4164 (2009) CrossRefGoogle Scholar
  25. 25.
    B. Zhao, D.N. Futaba, S. Yasuda, M. Akoshima, T. Yamada, K. Hata, ACS Nano 3, 108 (2009) CrossRefGoogle Scholar
  26. 26.
    Y.Y. Zhang, J.M. Gregoire, R.B. van Dover, A.J. Hart, J. Phys. Chem. C 114, 6389 (2010) CrossRefGoogle Scholar
  27. 27.
    M. Inagaki, A. Kawahara, Y. Nishi, N. Iwashita, Carbon 40, 1487 (2002) CrossRefGoogle Scholar
  28. 28.
    L.J. Ci, S.M. Manikoth, X.S. Li, R. Vajtai, P.M. Ajayan, Adv. Mater. 19, 3300 (2007) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Bin Zhao
    • 1
  • Lei Zhang
    • 1
  • Youxuan Liang
    • 1
  • Hanxun Qiu
    • 1
  • Junhe Yang
    • 1
  1. 1.School of Materials Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiP.R. China

Personalised recommendations